Exploring C++4
The Adventure Begins

Jason James

January 10, 2025

Exploring C++: The Adventure Begins

(© Jason James @80 i of 361

EY MG TR

Volume |
Programming Basics

Exploring C++: The Adventure Begins
Programming Basics

Brief Contents

| Programming Basics L il
Preface Xix

| Introduction 1
1 Background and Motivation 3

2 Getting Started with C++. 7

Il Flow Control 51
3 Decision Making 53

4 Functions 141

Il Data Aggregation 191
5 Classes 193

6 Containers 233

7 Permanent Storage 299
Appendices 311
Setup 313

B Debugging Tips 333

C Essential Unix Knowledge 337

D Input and Numeric Formats 349

E Character Encoding 353

F Timing Program Events 355

(© Jason James @80 v of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

Contents

(© Jason James @80

EY MG TR

I Programming Basics iii
Preface XiX
| Introduction 1
1 Background and Motivation 3
1.1 Background 3
1.1.1 Society and Computing 3
1.1.2 Jobs in Computing 3
1.1.3 Hardware vs. Software 4
1.1.4 CPU and OS and User Programs 4
1.15 Distinguishing Programming Languages 4
1.151 Types of Programming Languages 4
1.1.5.2 Compiled vs. Interpreted 5
1.2 Motivation 5
1.2.1 Why Programming? 5
1.2.2 Why CH++7 . . o 5
1.2.3 Why Not Graphical? 5
1.3 Wrap Up 6
2 Getting Started with C++. 7
2.1 An Environment 7
2.2 The main Program 7
2.2.1 The Bare Minimum 8
222 Printingtothe User 9
2.2.3 Programming in Style 11
2.3 Data Types and Input 13
231 Data Types 13
23.1.1 Integers 13
2.3.1.2 Decimal Numbers 14
2.3.1.3 Characters 15
23.14 Logical Values 15
2.3.2 Variables 16
2.3.3 Constants 18
2.33.1 constexprvs. const 18
2.3.3.2 Enumerations 19
2.3.4 Literals 19
235 User Input 20
2351 Input Failures 21
2.35.1.1 NotaFailure 21
vi of 361

Exploring C++: The Adventure Begins
Programming Basics

2352 char lnput 21

23521 ButWhatlIf.? 22

2.4 Doing Calculations 22
2.4.1 Basic Arithmetic 22
2.4.2 Watch Around Corners 23
2.4.3 Not-So-Basic Arithmetic 23
244 A Helping Hand 24
245 Storing Results 25
2.5 Program Design 25
25.1 An Example 26
2.6 Standard Libraries 28
2.6.1 Calculating the Timeof Day 28
2.6.2 Beyond Simple Arithmetic. 32
2.6.2.1 Powers and Logarithms 32

2.6.2.2 Trigonometry Functions 33

2.6.2.3 Rounding Numbers 33

2.6.2.3.1 An Example Continued 34

2.6.3 Random Values 35
2.6.3.1 Integers 36

2.6.3.2 Character — ASCIl — Values 36

2.6.3.3 Logical Values 37

2.6.3.4 Floating-Point Numbers 37

2.6.3.5 Logical Values Revisited 38

2.6.3.6 Why Aren't My Random Values Changing? . . . 38

2.6.4 Character Manipulation 39
2.6.4.1 Transformation 39

2.6.4.2 Classification 40

2.6.5 More From iostream 40
2.6.5.1 An Example Revisited 40

2.6.5.2 Formatting Output 43

2.6.5.2.1 The Rest of the Story 45

2.6.6 Another Point of View 47
2.6.7 And Back to iostream 48
2.6.7.1 Manipulating Line Endings 48

2.6.7.2 Other Manipulators 49

2.6.7.2.1 Floating-Point Display Manipulators . 49
2.6.7.2.2 Justification of Display Fields 49

2.6.7.3 Reporting Errors to the User 49

2.7 Wrap Up 50

Il Flow Control 51
3 Decision Making 53
3.1 Branching 53
3.1.1 if Statements 54

3.2 Looping 56
3.2.1 DeMorgan's Laws 58

3.2.2 Back to the Problem 58

3.3 More About bool 59
331 DeMorgan’s Laws and Efficiency 59

3.3.1.1 Implicit Optimization 60

3.3.2 Generating bool Values 60

3.33 Logical Opposites 60

3.3.4 Equality and Floating-Point 60

3.3.5 Equality and bool 61

(© Jason James @80 vii of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

3.4 Debugging with cerr 61
3.5 More Branching 62
3.5.1 Adding anelse Clause 62
3.5.2 Multiple Alternatives 63
3.6 More Looping 65
3.6.1 Applications for while Loops 65
3.6.1.1 TheVYes/Noloop 65
3.6.1.2 Checking for Input Failure 68
3.6.1.3 Input Validation 69
3.6.1.3.1 Input Validation with Failure Detection 70
3.6.2 The for Loop 70
3.6.2.1 Summation-Style Loops 71
3.6.2.1.1 Generalizing to the Max 73
3.6.2.2 Where'd My Variable Go? 74
3.6.2.3 But That Update Was Icky 74
3.7 Nesting 75
3.7.1 What Can Goin What 75
3.7.2 Examples. 75
3.7.2.1 Menus 75
3.7.2.1.1 Asynchronous vs. Synchronous . .. 77
3.7.2.1.2 Sub-Menus 78
3.7.2.1.3 Options Menus 80
3.7.2.2 Validation Revisited 81
3.7.2.2.1 Combining Validation and Domain
Checking 81
3.7.2.2.2 Really Nice fail Checking 82
3.7.2.3 2D Printing 83
3.7.3 What NOT ToDo 86
3.7.3.1 Removing a continue 87
3.7.3.2 Removing a break 87
3.8 Standard Libraries Il 88
3.8.1 OOPs 88
3.8.2 Thestring class 89
3.8.2.1 Declaration (aka Construction) 89
3.8.2.2 Displaying strings 90
3.8.2.3 Assigning strings 90
3.8.2.4 Inputting strings 90
3.8.2.5 Concatenating strings 91
3.8.2.6 Reading strings Containing Spaces 91
3.8.2.6.1 A Deeper Look at Concatenation . . 92
3.8.2.6.2 Back to Our Goal 94
3.8.2.7 Return to Menus L. 95
3.8.2.8 string Comparison 97
3.8.2.9 Centering strings 105
3.8.2.10 Find & Replace 105
3.8.2.11 Processing One Word ata Time 110
3.8.2.11.1 Taking Care of the Apostrophes . . . 113
3.8.2.11.2 Handling the Inter-word Gaps 114
3.8.2.12 Making string Content Name-case 114
3.8.3 Processing exceptions 117
3.9 Even More Branching 119
391 The switch Branch 119
3.9.1.1 Rules for switches 119

(© Jason James @80 viii of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

3.9.1.1.1 Menus Revisited 121

3.9.1.1.2 Suffixes for Numbers 122

3.9.1.1.3 Randomized Messages 125

3.9.1.2 Fallthrough 125

3.9.1.21 DaysUntilNow 125

3.9.1.2.2 Roman Numbers 128

3.9.2 The ?: Operator 130

3.9.2.1 Two-way Examples 131

3.9.2.1.1 Roman Numbers Revisited 131

3.9.2.1.2 Plural Agreement 132

3.9.213 GrossPay. 132

3.9.2.1.4 A Counterexample 132

3.9.2.2 Ternary with Identity 133

3.9.2.3 Greater Than Two-Way Selection 134

3.9.3 Factoring a Branching Structure 136

3.9.4 Summing Up Branching 137

3.10 Even More Looping 137

3.10.1 doloops. 137

3.10.2 Range-based for Loops 138

3.10.3 Summing Up Looping 139

3.11 Wrap Up 139

4 Functions 141

4.1 When? Who? Where? Why? What? How? 141

4.1.1 Why Functions? 141

4.1.2 How Do We Use Functions? 142

4.1.3 Where Do Functions Go in the Source Code? 143

4.1.4 When Should We Code Functions? 144

4.1.5 Who Are These Function People? 144

4.1.6 How Do We Design Functions? 145

4.2 Examples 147

421 Input an Uppercase Letter 147

422 Removing Leading Whitespace 147

423 Printing a Program Title 147

424 Centering Helpers 148

4.2.5 Displaying a Monetary Value 149

4.3 SCOpe 150

4.4 Arguments L L L 151

441 Passing Arguments 151

4411 Normal Argument Passing 151

4412 AnotherWay 152

4413 More Details of References 153

4.4.1.3.1 Caveat to the Reference Rule 154

4.4.1.3.2 Function Design Again 156

442 Function Overloading 157

4.42.1 Revisiting Rounding 158

442.1.1 Testing Functions Adequately 159

4422 Too Similar Types in Overloading 160

4423 Reference Types and Overloads 161

4424 ToSumUp 162

443 Default Arguments 163

4.43.1 Rounding Yet Again 163

4.4.32 Caveats & Guidelines 164

4.5 Tools for Better Functions 164
(© Jason James @80 ix of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

(© Jason James @80

EY MG TR

45.1 [Re]Factoring 164
45.1.1 Budgeting Woes 165
4512 Reading Coordinates. 168
452 Separate Compilation 170
4521 A Tale of Two Files 171
4522 The Interface File 171
45.2.2.1 Modern But Is It Better? 172
4523 Using a Library 172
4524 A Driver 173
4525 Examples 174
453 inline Functions 177
453.1 Examples 178
4532 inlining Library Functions 179
4533 inline and Default Arguments 179
4534 inlining With Style 179
4535 Rules and Suggestions 179
454 Help Debugging 180
4.6 Advanced Techniques 180
4.6.1 template Function Basics 180
4.6.2 tuplereturns L L 183
4.6.2.1 Apairof Results. 184
4.6.2.2 More Than Two Results 185
4623 Anti-Examples 186
4.7 Warnings: What Notto Do 186
4.7.1 Multiple returns 186
4.7.2 Unintentional Recursion 187
4.8 Wrap Up 189
Il Data Aggregation 191
5 Classeso 193
5,1l Basics 193
5.1.1 OOP in C+4+ 193
5.1.1.1 Examples 193
5.1.1.2 The class Concept 194
5.1.2 Learning by Doing 194
5.1.2.1 The Datalnside 195
5.1.2.2 private vs public 196
5.1.2.3 Input and Output 197
5.1.2.3.1 Confusing Points 199
5.1.2.3.2 Calling Objects Revisited 199
5.1.2.3.3 Always Present 199
5.1.2.4 Helper or Type-Specific Functions 199
5.1.2.4.1 Calculation 199
5.1.2.42 Comparison 200
5.1.2.4.3 Transformation 200
5.1.2.4.4 Arithmetic vs Normal 201
5.1.2.5 Defining class Functions 202
5.1.251 OneObject 202
5.1.25.2 Two Objects 204
5.1.25.3 A New Object 205
5.1.2.6 The Whole Picture 205
5.2 Making It More Usable 206
5.2.1 ACCESSOIS 206
5.2.1.1 ThePlan 206
x of 361

Exploring C++: The Adventure Begins
Programming Basics

52.1.2 The Implementation 207
5.2.1.3 Putting lttoUse 207
5.2.2 Mutators 207
5221 ThePlan 208
5.2.2.2 The Implementation 208
52221 Extreme Cases 210
5.2.2.3 Putting lttoUse 211
52231 AndAlsolnput 211
5.2.2.3.2 Toward Software Engineering 212
523 Constructors 212
5231 ThePlan 213
5.2.3.2 The Implementation 214
5.2.3.2.1 Default Constructors 214
5.2.3.2.2 Copy Constructors 214
5.2.3.2.3 Other Constructor Overloads 215
5.2.3.2.4 Remember! 217
5.2.3.3 Putting lttoUse 217
5.2.3.3.1 Improving Other Methods 217
52.4 The Whole Picture 217
5.3 Making It More Efficient and Robust 218
53.1 inlining Methods 218
53.2 Member Initialization List vs In-class Initialization 218
5.3.2.1 Hidden Gems 220
5.3.2.2 An Alternative L. 220
5.3.2.3 The Most Vexing Parse 220
533 const-Correctness of Methods 221
5.3.4 return Value Optimization. 223
5.3.5 The Whole Picture 224
5.4 Interesting Usage and Knowledge 224
54.1 Method Chaining 224
5.4.2 Composition 226
5421 Method Order in a class Definition 228
5422 Reliance on the Composed class 229
5423 Error Handling in Arithmetic Functions 229
5424 Increased Opportunities for Method Chaining . . 229
54241 To Cacheorto Chain 229
5425 The Whole Picture 230
543 Comparison with Structures 231
5.5 Wrap Up 231
6 Containers 233
6.1 A Tale of Two Containers 234
6.2 Basics of Containers 234
6.2.1 AMFAYS .+ o e e 234
6.2.2 vectors . . . L. L 237
6.3 Standard Methods & Helpers 240
6.3.1 AFFAYS . . e e e 240
6.3.1.1 Not So Useful 240
6.3.2 vectors L L 240
6.3.2.1 Not So Useful 242
6.3.3 An Example Application 242
6.4 List Management 244
6.4.1 List Operations 244
6.4.1.1 Display 244
xi of 361

(© Jason James @80

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

6.4.1.2 Insert and Remove 248
6.4.1.2.1 Insertion 248
6.4.122 Removal 251
6.4.1.23 Inverses 253
6.4.1.3 templates Revisited | 253
6.4.1.3.1 An Alternative Approach 256
6.4.1.4 Searching 257
6.4.1.4.1 LinearSearch 257
6.4.1.4.2 Comparison Within a Search 258
6.4.1.43 Binary Search 259
6.4.1.4.4 Comparison of the Searches 260
6.4.1.5 Sorting 261
6.4.1.5.1 BubbleSort. 261
6.4.1.5.2 Selection Sort 262
6.4.1.5.3 Insertion Sort 264
6.4.1.5.4 Reversing a Sort's Order 266
6.4.1.5.5 Comparison of the Sorts 266
6.4.2 An Example Application L. 269
6.5 Aclass AsaBase Type 269
6.5.1 templates Revisited Il L. 269
6.6 Container Membersof aclass 272
6.6.1 Constructors, Accessors, and Mutators 273
6.6.1.1 Built-ins and class Members 273
6.6.1.2 But With a Container... 274
6.6.1.2.1 Accessors 274
6.6.1.2.2 Validation and Information Hiding . . 275
6.6.1.2.3 Mutators 276
6.6.1.2.4 Constructors 277
6.6.1.3 Full Example 277
6.6.2 AVignette 279
6.6.2.1 Producer/Factory Functions 279
6.6.2.2 Local Scope and Looped Objects 279
6.7 Parallel Containers 280
6.7.1 Grades Example 281
6.7.2 Grades Revisited L. 283
6.8 More Than One Dimension 284
6.8.1 2D Initialization 286
6.8.2 Shaping It Later 286
6.8.3 Two Dimensional Processing 287
6.8.3.1 Input 287
6.8.3.1.1 Unknown Dimension Sizes 288
6.8.3.2 General Algorithms 289
6.8.3.2.1 Playing with Columns 290
6.8.3.3 Nice Qutput 291
6.8.3.4 An Example 291
6.8.3.5 Math Usage 292
6.8.3.5.1 Equality of Matrices 292
6.8.3.5.2 Adding of Matrices 293
6.8.3.5.3 Products of Matrices 293
6.8.3.6 Another 2D Structure L. 296
6.8.3.7 Parallel 2D Structures 296
6.8.4 Beyond Two Dimensions 297
6.8.4.1 Books ina Library 297
xii of 361

(© Jason James @80

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

6.8.4.2 Bricks ina Building 298

6.9 Wrap Up 298
7 Permanent Storage 299
7.1 Getting Up To Speed 299
7.1.1 What'sa File? 299

7.1.2 Where'sa File? 300

7.2 Basic File Operations 300
7.2.1 Connecting to Disk Files 300

7.2.2 Reading from File Streams 300
7.2.2.1 File Error Handling 301

7222 The Whole File 301

723 Writing to File Streams 302

7.2.4 Disconnecting from Disk Files 302

7.2.5 A Whole Example 302

7.3 Intermediate Usage 304
7.3.1 Passing File Streams to Functions 304

7.3.2 Opening Woes 305
7.3.2.1 Overwriting vs Appending 306

7.3.3 Advanced eof 307

7.3.4 Reprocessing a File Stream 308

7.3.5 Sample Code 308

7.4 Wrap Up 310
Appendices 311
A Setup . .. 313
A.l Windows 313
Al.1l IDE 313
A.1.1.1 The MinGW Diversion. 314

A1.12 VS Code Time! 314

A.l1.2 Unix Server Connection 315
Al121 Command Processing 315

A.1.22 File Transfer 316

A2 macOS 317
A2.1 IDE 317
A.2.1.1 The Xcode Diversion 317

A212 VS Code Time! 318

A.2.2 Unix Server Connection 318
A221 Command Processing 318

A222 File Transfer 319

A3 LinuX ..o 320
A3.1 IDE. . . . 320
A3.1.1 Theg++ Diversion 320

A3.1.2 VS Code Time! 320

A.3.2 Unix Server Connection 321
A.3.2.1 Command Processing 321

A.3.22 File Transfer 322

A4 ChromeOS 323
A4l IDE. . . . 323
A.4.1.1 The Linux Diversion 323

A41.11 A Compiler 323

A412 VS Code Time! 324

A.4.2 Unix Server Connection 324
A.4.2.1 Command Processing 324

A422 File Transfer 325

(© Jason James @80 xiii of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

A5 VS CodeSetup 326
A5.1 Normal Workflow 330
A.5.1.1 Terminal Management. 330

A.5.1.2 File Management 330

A5.1.21 Opening Files 330

A.5.2 Recommended Extensions 331

A6 Wrap Up 331
B Debugging Tips 333
B.1 Starting a Debugging Session 333
B.2 Setting Watches and Breakpoints 333
B.3 Stepping Through Code 334
B.4 Wrap Up 335
C Essential Unix Knowledge 337
C.1 Paths and Filenames 337
Cl1 Spaces and Quotes 338

C.12 Special Folders 338
C.1.2.1 More on Relative Paths 339

C.13 Wildcardso 339

c.2 Basic Navigation 340
Cc21 Listing Folder Contents 340

C22 Tab Completion 341

Cc23 Making Folders 341

C24 Handling Files, 342

C.25 Changing Folders 342

C.3 Common Commands 343
C3.1 Stopping a Runaway Program 343

C3.2 Getting Help 343

C33 Displaying Files, 343

C34 Paging Long Files 344

C.3.5 Converting Line Endings 344

C.3.6 Formatting Files 344
C.3.6.1 Caveat/Warning 345

C.4 Programmer Tools 345
C4.1 Recording a Transcript 345

C4.2 Searching Files for Text 346
C.4.2.1 Searching Files for Patterns 346

C.4.2.1.1 Regular Expression Basics 347

C421.2 regex Everywhere! 347

C5 Wrap Up 347
D Input and Numeric Formats 349
D.1 The Keyboard Buffer. 349
D.2 Basic Input of Numbers 349
D.3 Numeric Formats. 350
D.4 Wrap Up 351
E Character Encoding 353
E.1 ASCI . . . o 353
E2 EBCDIC 354
E.3 Unicode 354
E.4 Contiguous Runs 354
ES5 ASternWarning 354
E.6 Wrap Up 354
F Timing Program Events 355
F.1 Using time(nullptr) 355

(© Jason James @80 xiv of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

F.1.1 Method One 355
F.1.1.1 Dealing with Data Re-Organization 356

F.1.2 Method Two, 357
F.1.2.1 Adjusting for System Differences 358

F.2 Wrap Up 359

(© Jason James @80 xv of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

List of Tables

Signed Integer Size Information 13
Unsigned Integer Size Information 14
Floating-Point Size Information 15
Literals for All Types 19
Char-Mixed Input Examples 22
Operator Precedence Basic 22
Operator Precedence Negation 23
Integer vs. Floating-Point Division 23
Operator Precedence Modulo 24
cmath Library Functions 32
... 32
Rounding Formulas 34
cctype Library Functions L 39
Logical AND Evaluation 56
Logical OR Evaluation 57
DeMorgan's Laws — OR to AND 58
Efficiency Without DeMorgan’s Laws 59
Efficiency With DeMorgan's Laws 59
Comparisons in Math and C++ 60
Comparison Opposites 60
Equality With Floating-Points 61
Redundancy In bool Testing — true 61
Redundancy In bool Testing — false 61
Negative vs. Positive Responses Across Languages 67
for Loop Execution Trace | 72
for Loop Execution Trace Il 72
Shorthand Operators 74
string::compare Testing 97
string Comparison Exampleso 103
Basic string Finding Functions 105
string Functions Using Position Arguments 106
Set of Character Finding Functions 110
Exceptions From string Functions 118
Identity Values For Basic Actions 134
Basic array Functions L 240
Basic vector Functions 240

(© Jason James @80 xvi of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

... 240
Searching Algorithm Performance: Linear Search 260
Searching Algorithm Performance: Binary Search 260
Sorting Algorithm Distinguishing Properties 267
Stability of Sort Initial Data 268
Stability of Sort Data After First Sort 268
Stability of Sort Data After Second Sort 268
Plant Measurements Chart 284
Keyboard Buffer Visualization 349
Keyboard Translation Process 350
(© Jason James @80 xvii of 361

EY MG TR

Exploring C++: The Adventure Begins
Programming Basics

List of Figures

floor Versus round 34
if Branch Flowchart 54
while Loop Flowchart 57
if-else Branch Flowchart. 62
for Loop Flowchart 70
Astring in Memory L 99
do Loop Flowchart 137
Program Layout with Functions 143
Value Argument Passing | 151
Value Argument Passing Il 151
Value Argument Passing Il 151
Reference Argument Passing | 153
Reference Argument Passing Il 153
Reference Argument Passing Il 153
Reference Argument Passing IV 153
inline Function Visualization 177
class Member Variables in Memory 196
Constructor Call Patterns 213
Collections Before Containers 234
capacity Versus size of vectors 241
vector Element Indirect Indexing 247
vector Insertion Counterexample 248
vector Insertion the Right Way 249
vector Removal 251
Parallel vectors 280
A vector in Memory | 285
A vector in Memory Il 285
Parallel 2D Structure 296
Sample Directory Tree 340

(© Jason James @80 xviil of 361

EY MG TR

Preface

The first thing to know is that this book is written in a conversational — even whimsical style at times.
I'll not be formal unless the topic really calls for it.

Reader Background

| don't require too much background in this book. | expect you are an experienced user of your computer
system. That you know your way around the tray/taskbar and can install a new app with the best of
them.

| also expect you've had a modicum of math. Being good with algebra manipulations is really helpful
to the programming mindset, you see. So the more math you've had beyond College Algebra, the better.
My school requires having finished Pre-Calculus, but | think a good algebra student can handle it just
fine — especially if you have dabbled at computer programming before.

Styles
There are some color and style conventions used in the book that might be helpful to know up front

as well. For instance, different parts of the C++ language are colored differently. You can see a little
sample in this chart:

short #include 12'456
int rand() return "Welcome"
<iostream> cout \n'

All code samples are rendered in a little box like so:

#include <iostream>
using namespace std;
int main()

{

cout << "\n\t\tWelcome to C++!!!\n\n";

return O;

Note that copy/pasting from such boxes is fraught with peril! You'll end up with lots of crazy
miscopied syntax — computer programming talk for punctuation — and have quite the time tracking
it down. For longer code samples, I've posted them at the website where the book was found. But for
shorter ones, most people consider it a good idea to retype them to build muscle memory and maybe
remember it better consciously as well.

XIX

Exploring C++: The Adventure Begins
Preface Programming Basics

Preface

But beware a bit of code with a red border:

[bad goeth here]

Those are anti-examples — NOT to be emulated!

Typography

There are also sidebars with little extra bits of knowledge that you
might be able to live without. But why would you want to do
that?!

Definitions are given as they
are needed but not high-
lighted in any special way.
This highlights that all knowledge is precious — not just that found in a little rounded box! Also,
watch for them everywhere — even in footnotes!?

Also, there are links to online sites/documents. These links look like this one to the awesome website
cppreference.com. It is a great place to look up things you've forgotten the details of.2

Exercises

I've provided no exercises in this text. There are many example codes that are complete and run just fine,
but no explorations. This is because my teaching website alongside this one (craie-programming.org) is
filled with programming exercises. Each is separated into semesters and kind and difficulty rating. The
semesters at my school are CSC121 and CSC122. The kinds are labs for focusing 1-3 topics at a time
and projects for synthesizing 3-10 topics into a cohesive whole. The difficulty is given as a Level where
1 is relatively easy at the time the material is learned and 7 is pretty darn challenging at the time the
material is learned. They are great for practice even if you aren’t taking my courses so feel free to try
them out!

One further note about the prompts as assigned: they are not perfectly clear and tediously laid
out on purpose. Part of learning to program is interacting with the prospective 'customer’ of the
program/application. Their initial product description is likely to be imperfect and require some amount
of clarification with them — perhaps even a few rounds of it in some cases. Students of programming
need to get practice with this process as well. And who better to gather requirements clarification from
than their instructor!

Code Availability

As mentioned above, there are numerous code samples gone over in the text. Most are present in the text
in full. A few were much longer and are linked to on the companion site (craie-programming.org/OER).
The cutoff is about two pages.

| keep this split on purpose even though the codes in the text cannot generally be copy/pasted out —
something about fonts for special characters like underscores and quotes — because | feel it is important
to the student's memory to actually type much code for themselves at least in the first two semesters
of a typical program of study. This is part of the classical 'muscle memory’ tradition found in numerous
studies like math, martial arts, etc.

1Like this one, but not actually this one. ..
2|t seems to be where the standards committee for C++ members hang out and help maintain the wiki, so it must have
the latest and greatest info, right?

(© Jason James @80 xx of 361

EY MG TR

https://cppreference.com
http://craie-programming.org
http://craie-programming.org/OER/

Exploring C++: The Adventure Begins
Preface Programming Basics

Preface

Self-Study

In any significant study of material, there comes a time for self-study. And programming is no exception!
Here that takes the form of realizing you have an unanswered question or concern with a topic and
making a test program to clear that up or deepen your knowledge. Such programs are typically 10 or so
lines long, but can be pages in later topics.3

It is a good idea to make such programs regularly and document them well with comments, good
variable names and the like, etc. Always make the effort to make your code readable and understandable
to whomever may come by it later — even if that someone is just you. Don't underestimate the worth
of a good test program in reminding oneself the ways of a feature!

Viewing

| recommend a continuous scroll to keep the flow going from page to page. But it shouldn’t look bad in
one-page or 2-up modes, either.

Also, in that vein, since this book was produced to be a PDF and not in print, there is no provided
index. You've got built-in search in your favorite PDF viewer, so hit those [Control]/{command] and
keys!*

Finally, make sure you check regularly for updates as this is an online document and therefore subject
to anytime fixes, additions, or clarifications.

Copyright and License

This work is copyright ((©)) Jason James but is hereby released under the

Creative Commons Open License of Attribution for non-commercial uses only

and a share-alike option. That is, you can use this material freely for any @ @@@

purpose that doesn’t bring anyone profit, but you must give me credit.

I'd also like to plead with you that if you make changes to the work that
you share them back to me so that | may have the chance to consider and possibly incorporate them in
my own release. Please email me at 'OER at craie-programming dot org’ with any suggestions. Thank
youl!

Acknowledgements

Here are a very few of the folks to whom | owe a great debt and whose wisdom and service and support
helped me make this book you see on your screen:

e my partner Tammy

e my boys Kyle and Caleb

e my Mother

e my coworker Minhua Liu who copy-edited this work several times

e my coworker Carl Molyneaux who has taken over copy-editing after Minhua’s retirement

e my students whose struggles led me to refine my craft and come to the point of writing this work®

30f course, by then you'll be accustomed to writing such longer programs and it won't seem as daunting as right now.
smile

4In case it wasn't clear, you'll need to either read this in a PDF viewer like Acrobat or Preview or look at it in your web
browser.

5Not that I'm perfect and know all about my topic or my students. I'm just saying that without coming to understand
them with respect to both topical issues and economic issues in learning, | wouldn't have reached the place where | needed

(© Jason James @80 xxi of 361

Exploring C++: The Adventure Begins
Preface Programming Basics Preface

to write this book and release it as a free educational resource.

(© Jason James @80 xxii of 361

Part |
Introduction

1

Background and Motivation. L 3
1.1 Background 3
1.2 Motivation 5
1.3 Wrap Up 6
Getting Started with C+4+ 7
2.1 An Environmento 7
2.2 The main Program 7
2.3 Data Types and Input 13
2.4 Doing Calculations 22
2.5 Program Design 25
2.6 Standard Libraries 28
2.7 Wrap Up 50

Exploring C++: The Adventure Begins
Programming Basics

(© Jason James @80 2 of 361

EY MG TR

Chapter 1

Background and Motivation

1.1 Background 3112 Motivation 5
1.1.1 Society and Computing . 3 1.2.1 Why Programming? . .. 5
1.1.2 Jobsin Computing 3 122 Why C++7. 5
1.1.3 Hardware vs. Software . . 4 1.2.3 Why Not Graphical? . . . 5
1.1.4 CPU and OS and User 1.3 WrapUp 6
Programs 4
1.1.5 Distinguishing Program-
ming Languages 4

1.1 Background

1.1.1 Society and Computing

If you think you haven't been influenced by computing, where's that rock you live under? As we look
around ourselves, we see computers on every lap, in every pocket, in almost every device we own.
Computers make phone calls, take pictures, make toast just that perfect shade of brown, and any
number of things that make each day worth living.

Car braking systems, games, Web browsers — the Web itself! All are now controlled by computers
to our safety, amusement, and benefit.

To paraphrase a popular meme, if you want to have a profound impact on society, make an app for
it!

1.1.2 Jobs in Computing

According to the Occupational Outlook Handbook for Computer and Information Technology put out
by the U.S. Bureau of Labor Statistics, the median of computer-oriented job salaries vs median salaries
overall was $91250 vs $41950 in May 2020.

But are there jobs in these fields? Yes! The demand for jobs in these fields is expected to go up 13%
over the decade from 2020 to 2030. That's about 667600 new jobs. One of them could be yours!

The unemployment rate in computer fields was also around half the national rate in March 2022.1
Further, there are still many jobs in demand in areas of information technology. So, even if unemployed
— it can be only temporary until you've adjusted your tool-set!

12% vs 3.8%. This is, again, from the U.S. Bureau of Labor Statistics — just harder to ferret out.

3

https://www.bls.gov/ooh/computer-and-information-technology/home.htm

Exploring C++: The Adventure Begins
Chapter 1. Background and Motivation Programming Basics 1.1. Background

1.1.3 Hardware vs. Software

One important thing to distinguish right away is hardware and software. This isn't difficult, but some
find it a subtle issue, so let's talk to it briefly.

Hardware is the actual chips and wires and LEDs and such used in making the physical device. This
stuff would do nothing without proper software installed.

Software is patterns of 1s and Os stored in the memory of the hardware that controls the hardware
and makes it do something interesting. Software comes in many forms, but that is the topic for a later
book. The main thing we are interested in here is distinguishing the physical device from the electronic
bits inside that make the hardware do its job.

1.1.4 CPU and OS and User Programs

The primary hardware we are interested in is the CPU or Central Processing Unit. This bit of silicon is
in charge of processing instructions to make the rest of the hardware do something interesting. These
instructions are loaded in an automated fashion one right after the other from the memory (or RAM —
Random Access Memory) of the device until a stop or end style instruction is encountered.

The instructions get into the RAM because a particular bit of software known as the OS or Operating
System put them there as part of its job. An OS is key to any hardware and you'll find them all over the
place: Windows, macOS, Linux, i0OS, Android, etc. One of their functions is to load other software into
the RAM and set it going on the CPU when the person using the device — the user — requests it.

Such other software or user programs or applications are usually installed by with the OS or by the
user at a later time. They range from web browsers, to editors, to language compilers (see below), to
games, and so on.

1.1.5 Distinguishing Programming Languages

It is very helpful to decide what language to use on a particular project if we classify the programming
languages available to us in certain ways. Here we present two important ways of classifying programming
languages and subsequently find out how they relate to C++.

1.1.5.1 Types of Programming Languages

Traditionally, programming languages have been broken down into four overall categories:

i) procedural ii) object-oriented iii) functional iv) symbolic

Procedural programming is identified by the use of separate procedures which process the information
in the program one at a time and coordinate amongst one another whose job is next.

In an object-oriented program the data is the focus of the design and guides the way actions are
performed on or between data. It is hard to describe at this point, but we'll be delving into it later in the
book.

Functional programming, functions call — or invoke or evaluate — one another much like the proce-
dures in procedural programming, but there is always a value returned from every function. (In procedural
programming, there are often no results or side effects from procedures.)

Symbolic (aka logic) programming is for expert systems. Such Al programs try to act as experts in
a field to help diagnose problems with solutions.

In addition to these four, a new category has emerged called generic programming. In this type
of programming, we see code written that works on arbitrary data rather than data of a specific type.
(Again, hard to describe here, but we'll get to it later in the book.)

(© Jason James @80 4 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 1. Background and Motivation Programming Basics 1.2. Motivation

1.1.5.2 Compiled vs. Interpreted

A program can be run in one of two ways: via an interpreter or directly on the device's hardware. If
interpreted, the interpreter that's running on the hardware is used to piece together instructions from a
data file — the program — on-the-fly. So the program you are trying to run isn't running directly on the
CPU in your computer. It is being translated bit-by-bit into CPU instructions and then run piece-by-piece.
If run directly on the hardware, a program can be faster because it won't have to suffer this intermediary
translation process as it runs. How?

To run directly on the hardware, we have to first compile the program. Compiling is an extra step
between writing a program and running it, but the speed of the running program is well worth the
intervening step. During this step, a program is translated from the high-level programming language
into a lower-level language — C++, Java, etc. — made entirely of 1s and Os that the CPU understands
how to execute. CPUs don't deal in C++4 or Java or anything like that directly, after all.

Interpreted languages are often used for developing a quick mock-up of what a program might look like
with dummy routines instead of actual working code when a button is pressed or text entered. Compiled
languages are used when speed is of the utmost importance. These include mission-critical things like
braking systems on cars and the like.

1.2 Motivation

1.2.1 Why Programming?

Computers are built to be general-purpose these days. There are still what are known as embedded
systems which are very specific to a particular task, but mostly we see phones, tablets, laptops, and even
the occasional desktop. All of these things are meant to do much more than a single task — often at
the same time!

While we could learn to make the hardware that makes all of this possible, that is the subject of
another book altogether! We've chosen here to focus on writing programs to make that hardware do
certain tasks for us: automating the drudge work that makes our lives tedious and unbearable. Or
perhaps we will write a game to make the remainder of our time more enjoyable! Whatever our goal, we
can make it happen with the wonderful computers the hardware engineers have made for us by learning
to program.

1.2.2 Why C++7

C++ is being used in this book because it is in the top 10 languages in use in this industry no matter
what metrics you use to make that judgement. It also uses the popular C language syntax owing to
it being a derivative language of C. (For more on the history of C4++, see Bjarne Stroustrup's fine
book The Design and Evolution of C++.) Many languages mimic this syntax due to the indomitable
popularity of C itself. This makes learning other languages easier by dint having already learned a C-like
language.

In addition, C4++ supports not only procedural programming like its C ancestor language, but also
object-oriented programming. In addition, it is growing in its ability to do both generic and functional
programming styles. The versatility of this language makes it ideal as a starting point. You can move on
from C++ to almost any other language with ease.

As a side-benefit, C4++ is also a compiled language which will give you a broader idea of not only the
development cycle for software, but also an appreciation for the speed programs can run at.

1.2.3 Why Not Graphical?

A lot of students balk at using a textual interface with programming their first semester or two. They
are used to graphical interfaces in all of their daily uses of technology. However, managing such systems

(© Jason James @80 5 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 1. Background and Motivation Programming Basics 1.3. Wrap Up

is a tremendous chore all its own! We need to learn to use logical thinking patterns to teach a mindless
hunk of silicon and plastic to perform tasks for us. This is going to be challenging enough.

In addition, many systems still in use today are non-graphical. All over industry and academia, textual
interfaces are, if not popular, prevalent. Even parts of your typical graphical system are textual — input
of email, patient diagnoses, descriptions of housing, articles, books, etc.

There are many other reasons to not use a graphical interface in your first semester, but we digress
from our purpose here: to learn to program in C++!

1.3 Wrap Up

| think we've clarified just how impactful computers can be in the modern world and how lucrative a
career in computing can be. We've also explored basic computer concepts and reasons to study not just
programming but the C++ language in particular.

(© Jason James @80

EY MG TR

6 of 361

Chapter 2

Getting Started with C++

2.1 An Environment 7 2.4.4 A Helping Hand 24
2.2 The main Program 7 245 Storing Results 25
2.2.1 The Bare Minimum . .. 8|25 Program Design 25
2.2.2 Printing to the User . . . 9 251 An Example 26
2.2.3 Programming in Style . . 11|26 Standard Libraries 28
2.3 Data Types and Input 13 2.6.1 Calculating the Time of
23.1 DataTypes. 13 Day 28
2.3.2 Variables 16 2.6.2 Beyond Simple Arithmetic 32
2.3.3 Constants 18 2.6.3 Random Values. 35
234 Literals 19 2.6.4 Character Manipulation . 39
235 Userlnput 20 2.6.5 More From iostream . . . 40
2.4 Doing Calculations 22 2.6.6 Another Point of View . . 47
2.4.1 Basic Arithmetic 22 2.6.7 And Back to iostream . . 48
2.4.2 Watch Around Corners. . 23| 2.7 WrapUp 50
2.4.3 Not-So-Basic Arithmetic . 23

2.1 An Environment

Some books start with a long-winded section on setting up a C4+-+ environment. But I've chosen to
relegate that to an Appendix (A as it turns out). That's where you'll find lots of details about compilers
and development environments.!

At any rate, this way we can start learning C++4 right away and you can go and set that up when
you are tired of reading and ready to start doing.

2.2 The main Program

When a program is run on a computer, several steps take place in the background. First the user clicks
an icon or types a command at a prompt. This lets the operating system (OS) know that the user wants
a program executed. The OS then finds the binary (executable) code for the program on the system
drive and loads it up into the central processing unit (CPU) of the computer. This is where all actions
that take place in the computer happen — even those of the OS itself!

What, then, does the binary code of a program look like? Well, it is just what it sounds like: a
sequence of ones and zeros — binary values — which mean something to the CPU but not much of

IMainly we don't want you using Word™ or Notepad for programming. Plain text is necessary, but there is a need for
helping tools beyond what Notepad can offer.

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.2. The main Program

anything to us. The CPU, on the other hand, finds them riveting! It executes small groups of them one
after the other until your program has drawn on the screen, taken keyboard and/or mouse input, and
generally run its course as to what actions it should have done.

Is this binary code what we'll be writing in this course? Of course not! We'll be writing in a language
known as C++. CH4+ is somewhere between human language and mathematics in complexity. But
nowhere near as complicated as a raw sequence of ones and zeros!

2.2.1 The Bare Minimum

What does a C++4 program look like, then? The simplest C+4 program consists of a single function
named main. We call it the main function instead of, say, f as a math student might because it is the
main point of the program. It is where all actions performed by the program are planned and plotted
and laid out. Without this function, all would be for naught! What could such an important part of a
program look like? It is as simple as this:

int main()
{
}

Technically, this function is missing something, but as a special case, the C4++ language standard
allows this particular function to leave out its last statement. Were we to include it, it would look like
this:

int main()
{

return O;

It almost looks like a math function, doesn't it? With the name main instead of f and the parentheses
after it like that? But what's the rest? Well, let’s compare. Here's a typical math function:

f(x)=3x+14

The math function takes in a value — listed in its parentheses and called x by the function — and
is defined to multiply that value by 3 and then add 4. The result of this calculation is the result of the
function itself and is understood to be a real number because that is what math typically deals with —
numbers with potential decimal places. (As opposed to integers or rational numbers or even letters or
logical values. . .)

Comparing this to the main function from C++4, we see that the parentheses are empty here. This
means that the main function needs no value to start its job — its 'calculation’. However, since most
computer programs consist of many steps to coordinate things, we like to enclose them inside a pair
of curly braces (the {} symbols right after main's () and right after the semi-colon on the return
statement). This allows us to easily visualize the extent of the function. Another visual clue here is that
we indent every statement of the main a little more than the curly braces themselves. The amount can
vary from program to program, but is typically between 2 and 5 (inclusive of both those numbers).

What's the int for? Well, unlike our math function f, the main function of C++ always returns an
integer. int is short for integer because no-one wanted to type it all out. Why an integer, you say?
It seems the OS — remember the OS that loaded the program’s binary code into the CPU in the first
place? — wants an integer back from the program to indicate how things were during its execution.
Kind of like a hotel wants you to give it 4 stars on Yelp™ after your stay except that the OS prefers 0 to
4s. Zero?! Yes, think of it as indicating how many problems we had during our execution or a code for
the most horrible problem we had during our execution. 0 is perfect in the eyes of the OS — a successful

(© Jason James @80 8 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.2. The main Program

ending. And, frankly, if our program survives to that last statement, we should get to return that 0 to
it!

That, then, is what the optional statement is all about: returning that 0 to the OS so it knows how
things were while we were running on the CPU. This statement is optional because zero is the most
common return value and if left off, that is assumed by the C++ standard.

Is that all there is to C++7? Just those 3-4 lines of source code? (Source here to emphasize
programming language code vs. binary code.) Of course not! We couldn't make the program do
anything but load and stop with that! We generally at least want the program to print a nice message
to us on the screen, right? Let’s do that, then...

2.2.2 Printing to the User

Wait — who's this 'user'? That's us, of course! Well, you. Whoever is running the program is the user
of the program. So if you clicked its icon or typed its name at a command prompt, you are the user.
(Command prompt? Just hold on for a couple of paragraphs...)

This next C++ program will print a message on the screen when it is run. But not the graphics
screen you are used to. It will print to a special text-only screen called a terminal or command-prompt.
Here is the new code:

7

#include <iostream>
using namespace std;
int main()

{

cout << "\n\t\tWelcome to C++!!!\n\n";

return O;

When we run this program in the terminal, it will print a display like this:

$./welcome.out

Welcome to C++!1!!

$ _

Here the dollar signs represent a typical terminal prompt on a Linux/macOS machine. On Windows a
typical prompt ends in a greater than sign instead. Another difference is that on Linux/macOS we have
to indicate the executable name completely (the .out part) and on Windows the extension can be left
off since it is assumed to be .exe. Lastly, the Windows computer will assume nothing could go wrong
and the Linux/macQOS computer is always wary of viruses and Trojans getting in. The ./ in front of the
program name makes sure this is less likely to occur by running the welcome. out relative to the current
directory (folder).

Lesson learned: pay particular attention in lab to how your teacher runs a program so you can do the
same when you are alone outside of class! This can vary greatly from one environment to another!

To the original program we've added many items! Let's explore each carefully.

Starting from the middle — a very good place to start! — we see the name cout. This is the C++
name for the text screen or terminal. The 'out’ part might seem clear but why the 'c'? Is it because it is
for C++7 No. Oddly, it comes from an older name for the terminal. Historically the screen and keyboard

(© Jason James @80 9 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.2. The main Program

would come in a single piece of hardware with no computer inside. Much bigger than a modern laptop
even so, the unit was called a console. (This name has been used by many branches of computing and
entertainment over the years to signify different things. But we are talking about computer history here,
so...) (In particular, the console was the place where the operator or system administrator sat to enter
commands, but that is too much detail for now. See FOLDOC.org for more on this topic.) So, cout is
actually short for 'console output’. (Incidentally, it isn't spelled like an ACRONYM nor is it pronounced
'k-out’ but rather pronounced 'see-out’.)

So what is cout doing here? Well, it is being used with the insertion operator (the double less-than
signs taken together: <<) to insert some text onto the screen. See how the insertion operator looks
vaguely like an arrow pointing the way the data is going? That's important for both remembering what
symbols to use and to differentiate something later!

The text itself is enclosed in double quotes just like dialogue a person in a book would say. Inside
these quotes (and yes, | said double there on purpose; we'll use single quotes for other purposes later as
well and you MUST tell them apart!) we see the literal text that should be displayed on screen and some
other gibberish with slash characters as well. What are those? These are called escapes. The slash —
pardon me, backslash — escapes the next character’'s meaning and declares a special command instead.
The sequence \n signals a new line should start here and the sequence \t signals that the terminal should
jump to the next tab stop. Tab stops are 8 spaces wide on the terminal — not configurable, btw. This
pushes our welcome message over in a sort-of pseudo-centering maneuver.

But why does the first blank line before the message take only one \n to produce and the blank line
after the message takes two \n sequences to produce? Noticed that, did you? Very astute! Well, the
first one is helped out by the user — you — hitting the / key at the end of the command line.
That not only started the OS loading the program’s binary code, but also dropped the cursor (printing
position) to the beginning of the next line as well. So we only needed one \n to make a blank line there
but two afterwards. (The first \n after the message dropped to the beginning of the next line but the
second one dropped down again leaving the blank line before the next command prompt.)

While there are other escapes to learn, we can see them as they come up later.

So what are those other two lines we added

at the top of the program source for? Well, the Programming Libraries
first grabs a standard library for inputting and

outputting information on streams (Input/Output A library in programming terms is a collection
STREAMs, see?). We call this including the li- of code that can be reused in many programs.
brary and the # is the way C++ denotes this The C++4 standard comes with many libraries
command. (The # has many names, btw: oc- pre-specified and your compiler should have
tothorpe, pound sign, hashtag, number sign, sharp come with all of these so never fear!

sign/symbol, etc. In programming, we typically “
call it the pound sign and call this line a "pound
include’ line.) Why the angle brackets (the less-than and greater-than), then? Well, this says that this
is, indeed, a standard library rather than one the programmer has supplied. We'll see later how to write
our own libraries and #include them — it's slightly different.

Just a little depth on this, the # is the start of what's called a pre-processor directive. The compiler
is actually broken into at least three phases: the pre-processor, the compiler, and the linker. The pre-
processor is the part of the compiler that handles certain things like these directives and the removal of
comments before the compiler proper takes over translating the C++4 code into binary for an executable.
The linking phase and more on the pre-processor will come back into focus later in the book (section
4.5.2).

Okay. Then what's that using stuff all about? That's a little more complicated and needs a little
history to fully understand. In the beginning of programming there wasn't much room on computers for
information. Everything had to be as small as possible to fit in. So the names of variables and functions
were compacted into typically 6 or fewer letters or digits. The resulting license-plate names were nearly
incomprehensible! We longed for more clarity and, as computing progressed, more room was found and

(© Jason James @80 10 of 361

EY MG TR

FOLDOC.org

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.2. The main Program

names became longer and longer. Nowadays we regularly see variable and function identifiers that are
10-50 characters long. Some prefer them even longer! But C4++ says names can be of an unlimited
length but are significant only to some limit specified by the local system. (This is often around 250
characters, but let's not get greedy, shall we?)

So, what does that diatribe mean about the using line? Well, when names were small, many
programmers working on the same project would come up with the same name to represent similar or
even dissimilar values in a program. This conflict could cause one part of the code to change another
part’s values inadvertently. Such mistakes were frequent and painful to track down.

One way C++ thought to avoid such clashes of names was the namespace. This idea is to group
names into spaces separate from one another. The first namespace was called std which is short for
STanDard as it groups together all the names from the standard libraries. What the using directive is
doing, then, is letting every one know that the program is going to use names that belong to the standard
namespace. If a name is used that is unknown from this program’s source, it should be looked for inside
that space of names before being reported as an error. One such name is the cout we used to display
some text.

Is this hullabaloo really necessary? Maybe, maybe not. Some programmers prefer another syntax.?
Instead of the entire using directive, we could have used a simple 'std: :" in front of the cout. For this
program, such syntax would have been shorter and at least as clear if not clearer. But for more complex
programs using many standard library features at once, each being preceded by a separate std: : would
be tedious and messy.

We often choose where in a program to use the std: : syntax versus where to use a directive syntax.
Until we get to a more complete discussion of that, let's just place a single using directive to ease
ourselves into programming more simply, shall we?

whew Well, that sure was a lot, let’s get to more programming!

Code Fragments

2.2.3 Programming in Style

Code boxes in this section are for fragments of a program. A fragment

Wait! Before we move on, however, it is isn't a whole program that can be run on its own — it is missing
important to note more about the style of something — sometimes a lot! If you can't figure out what is missing
the program we've written. So far, we've from a fragment to make it run, please ask your teacher for help.

only made a point of indention: indenting
each line inside a pair of matched curly braces a set amount of space. But there is more to basic style
than indention — lots morel!3

Style-schmyle, | hear you say. Well, if it is worth writing now, it will be worth reading later. Also,
can you imagine writing hundreds of lines of C++ and trying to many months later adjust its purpose to
add a feature the user now realizes they want? It is mind-wracking, at best! In between you've written
many thousands of lines of code in C++, Java, Python, and many other languages. How are you going
to remember what these few hundred lines of code did? Reading it is a start and good style helps with
that.

Two other basic parts of style besides indention are wrapping and comments. Wrapping means taking
a statement that is too long for the current line and breaking it at a logical place to take up two lines.
But why not just drag the window wider and make the font smaller? That kind of trick only works for
so long. And everyone on the project must be able to read this code — not just you! So we typically
limit lines to 80-120 characters in length. (Ask your teacher what value is good for presenting code in
your class.) When you reach your limit — often represented in the editor by a dropped guideline or just
a number in the corner of the window — you should consider hitting / somewhere sensible
and continuing the current line below. But if we did that willy-nilly, it would look crazy, too. So, to make

2Basically a way to denote something. It will typically involve punctuation.
30r is it indentation? | can never figure that one out. . .

(© Jason James @80 11 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.2. The main Program

things more visually obvious, we further indent the wrapped line's continuation by some more space than
the original line was indented. How much is a matter of fervent debate and will not be dictated here!

A special case of wrapping is when a length limit is reached inside double-quoted text (aka string).
Most languages don't let you just hit / mid-string and pick up with further indented text on
the next line. (Should that extra space and the original indention be part of the display string or not?)
Instead, we must close the string with a double quote on the first line and reopen it with another double
quote on the next. Make sure to break a string between words for readability and include the inter-word
space within one pair of double quotes — not both! This might look like this for our earlier program:

cout << "\n\t\tWelcome to "
"C++!!11\n\n";

Note that the space between 'to’ and 'C++" is only in the first string — not both. Also note that we
didn't have to add a new insertion operator for the second string. This is because such wrapped strings
will be automatically joined (called concatenation) in the binary and so don't need a separate inserter
(double less than signs; <<).

Lastly, then, comes comments. They are not last to make them clearly of least significance. On the
contrary, | leave them last to make sure they are most likely to linger in your mind as you move on.

Comments are notes programmers place to themselves or other programmers who may read the code
in the future. Such notes should help the programmer understand what the code is supposed to do in
the case of errors that need to be fixed as well as how the code is supposed to be working in the case
of new features needing to be added. It is quite the complex task and takes years of practice to write
truly effective comments. Some people take technical writing to help hone this skill. Others take a more
creative approach. However you write your comments, just make sure others will be able to understand
your code when they are done.

But how can comments be placed into a C++ program? There are two basic ways: block comments
and end-of-line comments. An end-of-line comment can be placed in code with a pair of slashes — yes,
actual slashes this time — and the comment will then run until the end of that physical line of code:

int main() // function takes no input and returns an integer
{
cout << "\n\t\tWelcome to " // welcoming the user to
"C++!11\n\n"; // their new C++ experience!
return O; // 0 goes back to 0S as error count/indicator
}

Such comments can get overused as they are so easy to put in, but better too many comments than
not enough? Perhaps we could collect the comments together in a block. This can be done by beginning
with a slash and an asterisk (star) and ending with the reverse:

/*
This main function takes no input and returns an integer to
the 0S. The 0S takes 0 as an indication of no errors or an
'all clear' from the program.
This program welcomes the user to their new C++ experience!
*/
int main()
{
cout << "\n\t\tWelcome to "

(© Jason James @80 12 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input

"C++!11\n\n";

return O;

These comments can go on for miles! But try not to drone like this text does. Keep it to the point
and clear. Just not too terse to be understood. Leave in the details from your notes or thoughts on how
this code came together so it can be re-envisioned by those needing to add features in the future. You
can also leave notes on what approaches were tried and failed to work so that new programmers won't
try to reinvent the wheel only to find that it has already gone wrong before.

2.3 Data Types and Input

Another key aspect people will expect from a program is interactivity. That is, they'll want to enter their
data into the program and get answers back. Luckily cout can print any kind of data — not just strings
of literal text. But what about reading in the user’s data?

To input data from a user, we'll need a place to store it. To do that, the computer demands to know
the type of information being stored. So we need to know what information is being read in and tell the
computer that somehow. This calls for data types.

A data type is a description to the computer of a set of values, how they are stored in binary form,
and how they interact with one another. We'll start with the first two and leave the last for a later
section.

2.3.1 Data Types

What data types are already available on the computer? It works with several different classes of numbers,
characters that come in as keystrokes, and truth values natively. We've also seen that it can store and
display literal text in strings. Those are a little trickier for us to use beyond their literal form, so we'll
hold off learning more about the string data type until later in the book.

So let's start with numbers: what kinds of numbers does the computer know how to deal with? It
knows several kinds of integers and a few approximations of real numbers (the kinds with decimal parts,
remember?).

2.3.1.1 Integers

The integers are distinguished by range of values storable and, in particular, whether they can carry a
negative sign or not. Following is a chart of the signed integer types available on any computer using
C++:

Type Name Minimum Maximum Bit Size
short -32'768 32767 16
int ? ? ?
long -2'147'483'648 2'147'483'647 32
long long | -9'223'372'036'854'775'808 | 9'223'372'036'854'775'807 64

(© Jason James @80 13 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input

Wow! Those values can get
really big! Indeed, a 64-bit inte-
ger is up to 19 digits long! I've
yet to wrap my head around the
magnitude of this. The 32-bit
integers, on the other hand, are
just at 2 billion — a much more
palatable quantity.

But wait! Don't forget

Digit Grouping

Hey, wait a minute! Why are all the commas single quotes instead? Well, if
the computer sees things separate by commas, it thinks they are separate things
instead of parts of a whole — always! It doesn’t have much of a sense of context,
you see. That is, it doesn't know the difference between a comma between
numeric groups and a comma between words, for instance. So, to compensate
and still allow humans to see the grouping more clearly, the C++ language made
it so the computer understands single quotes between groups within the source
code. (This won't help the user when inputting values to the program, but it does

about the unsigned versions

) . help programmers reading source code.
(those that disallow negative » ey 4)

values). Here are the unsigned
integer types:

Type Name Minimum Maximum Bit Size
unsigned short 0 65'535 16
unsigned int 0 ? ?
unsigned long 0 4'294'967'296 32
unsigned long long 0 | 18'446'744'073'709'551'616 64

Whoa! | can't believe it!*

One thing about the charts demands more investigation. Why are int and unsigned int full of
question marks? That is because they are platform dependent. That is, they depend on the particular
hardware and OS combination in use on the machine. This makes them a moving target if you are
developing (creating and testing) on one platform but deploying (installing and using) on another. You
may be developing on a 64-bit platform, for instance and deploying to a 32-bit or even 16-bit platform.
If you use int or its unsigned counterpart, the range of values that are available will change. This will
make all your testing irrelevant and the user upset when certain cases fail to work that you promised
would!

To avoid this, | rec-

ommend avoiding the Type Name Variants
raw int types and al-

ways using the short Why ‘variant'? Well, short is actually just a shortened form of
or long variants (or signed short int, for instance. The computer knows that you want
long long if you need signed numbers — those handling negatives — by default and even de-
ridiculously large val- faults to a basic integer as well. Similarly for the long and long long
ues!). This will be a bit types. Even the unsigned versions could have int specified after their
of a headache later be- names, but why bother when it is understood??

c_ause of another deci- 20ne of your first rules of debugging (finding mistakes): the less you type, the
sion of the C+4+ stan- fewer mistakes you can make.

dards committee, but in

the long run it is well worth the trouble to meet the user’s data expectations and needs.

So which type do we use for what? Well, you have to look at your application’s particular needs and
decide based on the available range of values what is going to be most appropriate. For our purposes in
this text, we'll mostly decide between short or long or their unsigned counterparts.

2.3.1.2 Decimal Numbers

What about the other numeric types? Those that approximate the real numbers? Well, those are
collectively called the floating-point types. This is because of the way electrical engineers decided to
store the binary forms. They allowed the decimal point to float back and forth with exponential /scientific

4Okay, | can, but maybe you can't. *grin*

(© Jason James @80 14 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input

notation and always store the value with a 0 in front of the decimal. This allows them to not store the
whole part of the real number at all as it is always a 0!

So what about the rest? Well, let's look at the specifications of how the decimal part (the mantissa)
and exponent are stored:

Type Name | Precise Digits | Exponent Maximum
float 9 38
double 17 308
long double 21 4932

Here the number of precise digits is how much of your data is guaranteed to calculate correctly. (See
your basic physics or chemistry text for more on precision of calculations.) The exponent maximum tells
what power of 10 can be stored safely without overflowing the allotted number of bits used to store each
type. This exponent can be used in negative to float the decimal the other direction but with one less
magnitude. (So, -37 for float, for instance.)

As you can see, long double is going to be mainly used for cosmological and quantum calculations.
float might seem enough for everyday calculations, but it really isn't supported in most hardware (CPUs)
these days. So we only use float in special situations like embedded systems or other special processors.
That leaves double to be used in everyday calculations. That'll be our floating-point type of choice in
all contexts of this book.

2.3.1.3 Characters

What about the characters | mentioned? Well, basically, we can use the char data type to store any
single keystroke the user types. This will come in handy for simple queries like yes or no, gender, etc. It
is also appropriate for reading much notation the user types like dollar signs, parentheses on coordinates,
a letter d for dice rolling notation.®

The binary form of char values is known as ASCII — the American Standard Code for Information
Interchange. Charts can be found online, but avoid learning lots of numeric codes for letters and such.
That's for deep-geeks — not us everyday programmers. Also, it just isn't necessary as the computer
knows how to do it and does it automatically. We use the actual letters and such that we want to use
and they are translated on the fly.

| only tell you about the ASCII nature of our char storage for two reasons. One, the letters and digits
are stored contiguously — right in a row. This makes some comparisons and 'calculations’ easier than in
other storage systems like EBCDIC which is used on many mainframe machines even today. Two, there
are separate entries for the lower and upper case letters. This will make normal comparison of letters
and words harder as, for instance, an A is different from an a inside the computer.

| said keystrokes before, but ASCII actually contains a character that cannot be typed at the keyboard
as well. It is called the 'null’ character and is typed "\0' in source code. This is used as a special value
to signal that a particular char memory location hasn't been filled by the user yet.

For those needing more than basic English text and punctuation, there is the data type wchar_t.
This type is for wide characters and can hold any data stored in the Unicode format. Sadly, the details
of use of this type are beyond the scope of this document.

For some more on these topics, please see Appendix E.

2.3.1.4 Logical Values

Finally, what about those logical values? These are stored in the data type bool. It only has two values:
true and false. You might think this would make it good for yes/no questions, but bool doesn't input
from the user very well and most users don’t think in truth values, anyway. We'll learn more about using
this data type in a later chapter.

5More on that in section 2.3.5.2!

(© Jason James @80 15 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input

Now, how do we use these data types to read in the user's input? Well, first we'll have to learn to
declare variables of the right data type.

2.3.2 Variables

Variables can't just be used without declaration in C++ like they can in math. In math, all variables are
assumed real numbers unless context says otherwise. In C++, there are no assumptions about variable's
data types. Therefore, we must learn to declare a variable of a certain type before we can learn how to
input data from a user.

The format of a variable declaration is quite simple. Just start with the data type you want to declare
and then follow up with one or more variable names (aka identifiers). If more than one variable is to
be declared at once, we separate them with commas (as mentioned in the sidebar earlier). As with all
statements in C++ (note the using directive and return statements used so far), a variable declaration
isn't over until you place a semi-colon on it.

Let's try it out:

short deer_in_park;
long people_in_Chicago;

double gross_pay, net_pay, pay_rate, hours_worked;
char dollar_sign;

Here we see several things:

i) identifiers don't have to be single letters

ii) identifiers can have underscores in them
iii) identifiers are case sensitive (upper vs lower case matters!)

We don’t use single letters for variable names to avoid the clashes mentioned earlier in the text
when describing namespaces. Underscores can be used to make more descriptive names with phrases
instead of single words. The case sensitivity is often a surprise to students of programming as it seems
counterproductive at first. But it can really help distinguish different parts of the program if used
consistently and with forethought.

If you don't like the underscores on these longer names, however, there is another popular technique
called camel-case. In this technique you use a capital letter for each subsequent word after the first.
Instead of separation by underscore, then, you have separation by capitalization:

short deerInPark;
long peopleInChicago;

double grossPay, netPay, payRate, hoursWorked;
char dollarSign;

We also see in these example code fragments that parts of the code which are somehow logically
separate can be separated physically by blank lines. The population variables seem to have nothing to do
with one another or with the pay information below and so are separated by blank lines. The dollar sign
variable, on the other hand, seems to naturally fit with the pay information and so is not separated from
them.

(© Jason James @80 16 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input

Lastly, let's look more in detail at the comma-separated list of variables storing pay information.
Many programmers don’t like this style and would prefer us to break the single declaration statement
into several separate ones:

double grossPay;
double netPay;
double payRate;
double hoursWorked;

They point out that this makes it easy to now comment each variable with more details of its nature
with end-of-line comments (using the double slashes we learned about above). As a counterpoint, I'd
offer that we can do this same thing if we arrange the variables like so:

double grossPay,
netPay,
payRate,
hoursWorked;

Here we have a single variable declaration spread across several physical lines of the source code.
Note again that a declaration statement isn't over until the semi-colon is reached — it doesn’t matter
how much space is involved or even how many physical lines of the file. And we still have plenty of room
for those end-of-line comments! (Also note the extra indention for the wrapped line as discussed before!)

The arguers would then say that we'd have trouble changing the data types later if new insight
or knowledge led us to change just one of these variables. 1'd tag back that, if our specifications
gathering was worthwhile, we'd have grouped these variables together because they were intricately tied
by calculations and would never change to be of different types. (This might be a bit of an advanced
note at this point in your career, but it never hurts to learn something new, right? *smile*)

Before we go on, though, | should point out that variables can not only be declared, but also initialized
(given a first value) at the same time. Some will tell you that you should initialize every variable to
something — no matter if you know what they need to be or not.

However, |'ve been bitten by problems in the past with initializing the variable that controls a loop
— a structure that repeats some lines of code until a certain condition is met — too soon and so |
recommend to initialize before use instead of when declaring unless you really know a good initial value
for that variable.

Whichever side you fall on, there are three ways to initialize a variable to a value. Here are the
syntaxes® (formats) of how to initialize a variable:

short wvarl = 9;
long var2(42'012'593L);
double var3{15.67%};

Using an equal sign is simple, comfortable, and conventional. It is not, however, currently in vogue
as the number one choice. Neither is the use of parentheses as on the second variable.

The current rage in initialization is the use of curly braces as in the third variable’s case.

"Why?" you may ask. It's because it helps avoid narrowing conversions. A narrowing conversion is
when you initialize one variable with more data than it can handle.

6Ves, that's the plural of syntax. | looked it up!

(© Jason James @80 17 of 361

Exploring C++: The Adventure Begins

Chapter 2. Getting Started with C++

Programming Basics 2.3. Data Types and Input

This might seem silly, but it happens
from time to time when we think a vari-
able should be one type and then change
our minds later in the design. And the more
such problems we can avoid in an automated
fashion, the better. For instance:

short var = 9.2; // silently
// ignored

Here, we initialize a short integer with
a decimal value. The computer will silently

Literal Modifiers

Some of you will have noticed the capital L after the second vari-
able’s value. This signifies this value as a long integer to the
compiler. Without it, the default type for integer values is int
and our rather large value may not fit! You can also technically
use a lowercase 1, but this is avoided because it can be confused
with a digit 1 in many fonts. The L notation also works to make
a long double out of a double literal.

If we wanted to show a value was particularly unsigned, we could
attach a lower or upper case U to it. Also, a float literal can be
made by adding an F in lower or upper case to a double.

chop off the decimal as it just cannot fit in anklnteger Space. It we had used brace-initialization instead,
we'd have gotten a warning or even error that the data would not fit:

short var{9.2}; // *eek* Bad init!

Another advantage to the brace-initialization pattern is that it can be used to make a default value
for the variable:

short var{}; // var will be 0

Neither other syntax does this. Leaving an equal sign without a value is an error and leaving it off
entirely leaves garbage bits from previously running programs in the memory for the variable — a garbage
value when interpreted as our data type. With parentheses, you accidentally declare a function instead
of a variable! This is quite annoying when you later try to use the variable and find that it isn't one.
(More on writing functions other than main in chapter 4.)

2.3.3 Constants

Variables are nice, but they are allowed to change throughout the program. (Hence the name — vari-
being a root meaning they can vary.) Sometimes we have data that shouldn't change during a run of
the program. These values are, of course, called constants. They can be made in two ways depending
on the situation.

Anything can be made constant with the const keyword. This marks a memory location (like a
variable or function parameter) to never change during the program run. This can be handy especially
for function parameters and we will use it lots after studying that chapter. For now, feel free to apply
it to initialized 'variable’ 'declarations’. (Those words are in quotes because the memory location will no
longer be a vary-able and because initializing a memory location makes this also a definition as well as a
declaration.)

We would use it like so:

const double PI{3.14159265}; // but see later for a better PI constant!

2.3.3.1 constexpr vs. const

The same rule applies for constexpr except that it doesn't work on function parameters. This is a newer
keyword but works in slightly different ways. We may talk more about it later, but for now, you can mark
memory locations constant with it just as with const:

constexpr double PI{3.14159265}; // no, this is not the better PI constant!

(© Jason James @80 18 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input

2.3.3.2 Enumerations

There is another way to make a group of constants whose values may not even matter to us. This is
because they are there just to name a series of situations we need to keep track of. This set of constants
is referred to as an enumeration and is coded like so:

enum WeekDays { THURSDAY, FRIDAY, SATURDAY, SUNDAY, MONDAY,
TUESDAY, WEDNESDAY };

Here the constants values are immaterial and it is just that each one is named and taken care of that
is important. (The order here is because of the fact that the computer epoch landed on a Thursday. See
our discussion of time in section 2.6.1 for more.)

But, we can also use it to number things from a value we choose:

enum MonthNums { January = 1, February, March, April, May, June,
July, August, September, October, November,
December };

Here we number January as 1 and the rest are auto-incremented from there. This gives us nice
values for printing month numbers to the user later in the program. (If we want names, we need a lot
more power. Please see section 3.5.2 and section 3.8.2 for more.)

And, finally, we can use it to number everything just the way we want it:

enum MonthDays { Jan_days = 31, Feb_days = 28, Mar_days = 31,
Apr_days = 30, May_days = 31, Jun_days = 30,
Jul_days = 31, Aug_days = 31, Sep_days = 30,
Oct_days = 31, Nov_days = 30, Dec_days = 31 };

Here each constant is given a certain value. This is important because the values here are not
sequential or even in a code-worthy pattern! So why use the enum method here? Why not just make
a list of constant or constexpr shorts? Well, it groups these constants together under a single place
and even gives them their own data type!”

That's right, that name following enum in each example is naming a new data type that has only the
listed values in it. This lets us declare variables of this type and use these constants with those variables.
Sometimes the compiler will even warn when other values are used with the new data type — it depends
on the compiler’s settings.

2.3.4 Literals

There is one more thing that goes along with constants and variables and those are literals. We've seen
a few so far for integers, floating-point values, logical values, and strings. But we haven't seen all of
them or any for characters! Let's look them over in the following table:

It also is a little shorter in syntax and we love to save typing!

(© Jason James @80 19 of 361

Exploring C++: The Adventure Begins

Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input
Type Name Literals

short N/A
int 5
long 5L, 51
long long 5LL, 511
unsigned short N/A
unsigned int 5u
unsigned long 5ul, 5ul
unsigned long long | 5ulL, 5ull
float 5.F, 5.f
double 5., 5.
long double 5.1, 5.1
char "5, \n’
bool true, false

Note that there are no short-typed literals. All plain integers in source code are assumed to be int.
Placing an upper or lower case L on the integer makes it a long integer. Adding a second L/l makes it
long long. Adding a U/u makes it unsigned.

For floating-point values — those with a decimal point or scientific notation, they are double by
default. To make one into a float, add an F/f. To make one into a long double, add an L/I.

Other than the suffices, the details of the numeric literals are discussed in the appendix D.3. Be
warned! They are a little heady and not for the weak at heart.

A char-type literal has to be in single quotes — double quotes for more characters that make a
string, you see. This can include escape 'sequences’ which count as a single thing. This is very different
from a string literal and the two are NOT inter-compatible!

We'd already seen the two bool literals, but I've included them for completeness.

2.3.5 User Input
Now that we have variables, we can input data from the user!

Let's start with the name of the screen in C+4. Since cout was for console output, what do you
think is going to be used for reading data from the other half of the console: the keyboard? That's right!
cin is our name for the keyboard in C++4 and is short for console input.

To input a value into a variable, we also use a similar syntax as to output. Before we used an
inserter or the insertion operator (two less-than symbols side-by-side). This showed the direction of the
information flow — from the string to the screen (cout). Now we'll use what's called an extractor or
the extraction operator. This is two greater-than symbols side-by-side and again shows the direction the
information is flowing — from the keyboard to the variable:

double pay_rate;

cout << "What is your hourly rate of pay? ;
cin >> pay_rate;

Here we use a variable called pay_rate to store the user's hourly rate of pay. We can tell this from
the prompt and the nicely named variable. What's a prompt, you say? Well, it nudges the user with an
appropriate question so they know what to type when the program pauses here. Therefore it is known
as a prompt. (It doesn’'t have to do with timeliness, but with prodding someone into an action.) For this
reason, we almost always associate an input with an output to prompt the user.

Note also that cin doesn't begin translating the user’s input until they've hit /. This is
the signal that the user is done with their typing and are ready for the program to continue. Until such

(© Jason James @80 20 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.3. Data Types and Input

time, they can use backspace and more typing to edit their input. The arrow keys typically don't work
on the console/terminal input.

Some wonder here how the individual keystrokes typed by the user are put together into numbers for
us. But not all of us are so inquisitive. So I've put the details of that in Appendix D. To those who go
there: Happy investigating! See you back soon!

Sometimes we need a lot of information from the user at once. Toward this end, you can also read
more than one value at a time as long as you have a separate variable for each value you want to read:

double pay_rate, hours_worked;

cout << "Please enter your hours worked and hourly pay rate: ";
cin >> hours_worked >> pay_rate;

The user must type these values separated by some sort of space (often called whitespace). This
can be the [Spacebar], the [Enter]/[return] key, or the key.8 (Sometimes there are other spacing keys
available, these may be used as well.)

This isn't, however, necessarily a good idea for this situation. But there are other situations that
could call for it. We'll see an example of this shortly.

2.3.5.1 Input Failures

Numeric input is pretty robust, but there can be problems. The user can enter anything properly numeric:
a leading plus or minus sign and a sequence of digits for both integers and floating-points, a decimal
point and another sequence of digits for floating-points, and even scientific notation with E or e, a plus
or minus sign, and more digits for floating-points. But, it has to have something of these and a proper
combination of them. For instance the e-notation can’t be first nor can there be just a plus or minus
sign and nothing else. There can be no spaces inside the number. And commas are not allowed, either.

Also, nothing that isn't allowed above can be used during a numeric input: no letters, no other
punctuation, no other strange symbols (all of which are actually considered punctuation by the computer).
The following input sequence would result in an input failure:

[What is your hourly rate of pay? forty-two dollars an hour

So what happens when a failure occurs on cin? Well, cin stops reading and goes into a fail state.
From this state, it will not rouse until told all is well again. Doing so requires us to code decision making,
but that is a tale for another day (see section 3.6.1.2).

2.3.5.1.1 Not a Failure

One thing that is oddly not considered a failure is inputting a negative value into an unsigned integer.
This merely causes the negative value to wrap around the circle of doom (described in section 2.4.2) to
a seemingly arbitrary positive value!

2.3.5.2 char Input

The data type char is special during input.® While spacing can be put on either side of the character
value, it doesn’'t have to be! This is because each keystroke is exactly one character and so it doesn't
take more whitespace to tell the extraction operator that the input has ended. For instance, this code:

8Putting multiple extractions on one statement like this is called chaining them together or simply chaining. We can
chain insertions on a cout as well.
9Not as special as bool which won't input at all, but definitely different.

(© Jason James @80 21 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.4. Doing Calculations

char dollar_sign;

double price;

cout << "How much is the item you would like to purchase? ";
cin >> dollar_sign >> price;

\.

will work with space after the user's monetary unit or not:

How much is the item you would like to purchase? $ 49.99

\.

Works just the same as:

How much is the item you would like to purchase? $49.99

Again, the $ being a single keystroke makes the char input done as soon as it finds a non-whitespace
character. This also makes it ideal for most human notation as humans like to abut their notation against
the data tightly:

3d642 3:12 [2022-16-01
(32,-6.4) | (847)555-1234 [4,12)

2.3.5.2.1 But What If..?

But what if the user forgets their $ on the money? That will be a problem! In the above example, for
instance, if the user forgot to type a $ in front of their 49.99, >> would read the '4' as the dollar_sign
variable’s value and store just the 9.99 as the price. What?! But '4"' isn't a dollar sign! How can this
happen?!

Remember, the computer doesn’t really understand human language. When we call a variable
dollar_sign, the computer just knows that that name associates with a certain block of memory
of the right data type. It has no idea what that name means to us or at all. Since it has no significance,
any single keystroke that isn't whitespace is just as good as any other. The '4' is a single keystroke
that isn't whitespace and so is read just fine as the dollar_sign.

Don't worry, we'll take efforts to fix this issue, but that'll have to wait until chapter 3. ..

2.4 Doing Calculations

Now that we can read in the user's data, let's do some calculations on it!

2.4.1 Basic Arithmetic

Arithmetic is built into the C4++ language even to the point that it knows the standard order of operations:

Operation Note
() parentheses
*/ multiplication and division
+ - addition and subtraction

Operations on the same line happen at the same stage in the order seen in the expression from left
to right, as usual.1®

10PEMDAS is often misused such that people think multiplication always comes before division and addition before
subtraction. This is totally not the case! They just happen from left to right — whichever comes first within each row of
the table.

(© Jason James @80 22 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.4. Doing Calculations

Note also that negation works as a minus sign without anything in front of it: -x is the same as
-1xx.1' The computer actually understands the difference between x-y and just -y. (Unlike your poor
calculator which needs a separate key for that kind of thing...) This operation happens just before
multiplication and division:

Operation Note
() parentheses
- negation
*/ multiplication and division
+ - addition and subtraction

2.4.2 \Watch Around Corners

Well, not really corners, but what you might think of as ends? Note that the integer types have minimum
and maximum values set in stone. Well, what happens arithmetically when we subtract, add, or multiply
past that point? Does it just stop and stay at the end? Sadly, no. It turns out that the electrical
engineers that designed the system were very clever in reusing the bits of the signed integers to extend
the unsigned integers' ranges. This affects how the extreme boundaries handle over-the-edge cases.

Essentially, what we view as a number line from a minimum to a maximum was bent into a circle
and the minimum and maximum are neighbors now. So, when you add 1 to 32'767 in a signed short
integer, you get -32'768. And when you subtract 1 from 0 in an unsigned long integer, you get
4'294'967'296uL.1?

This is so tricky that some call it the circle of doom. But that seems a bit extremist, don't you think?
Just a reason to be careful of edge cases.

2.4.3 Not-So-Basic Arithmetic

Normally humans expect division to produce decimal results. This is what we learn near the end of fourth
grade (at least where | grew up; maybe earlier or later for you?). But earlier that year, we learned a
different technique (again, your mileage may vary): stopping at the end of the integer and stating any
remainder.

So, near the beginning of 4t grade, we learned that 14 frogs divided into groups of 3 had 4 whole
groups and 2 frogs left over. But later that year, we'd changed it to 4.6 frogs per group. (Which doesn't
really make sense, now does it?)

The computer takes the former approach to dividing integers just in case it doesn’'t make sense — like
dividing frogs into little pieces. If you want a decimal division result, you need to involve floating-point
data instead or in addition to the integers. That is:

14/3 4
14. /3| 46

That begs the question, how do you get the remainder? Well, they went with a symbol on your
keyboard that looks like the division slash but not exactly it: %. It doesn't stand for percentages but
the mathematical operation modulo. The thing on the right side of it isn't the divisor any more but the
modulus. (But most teachers will be happy if you remember remainder. Ask yours just how meticulous
they are on this matter.)

So, then, to get the remainder of frogs we can code:

short total_frogs;

11Except that the multiplication version is a good bit slower...
12 Assuming the long integers are 32-bit, of course. ..

(© Jason James @80 23 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.4. Doing Calculations

cin >> total_frogs;

cout << "Dividing your " << total_frogs << " frogs into groups "
"of 3 we get " << total_frogs / 3 << "\ngroups and "
<< total_frogs 7 3 << " left-over frogs.\n";

Modulo takes place in an expression at the same level as multiplication and division:

Operation Note
() parentheses
- negation
*/ % multiplication, division, and modulo
+ - addition and subtraction

Note how we wrap longer lines and indent the following lines. Also see how we break the string literal
without an extra inserter.

But also remember that this is a fragment missing many things in order to be run properly. It is
missing #include and using as well as a main structure and even a prompt for the cin!

Make sure you are learning all of these things so that you can try them out on your own in your local
environment! Practice makes perfect, they say...

2.4.4 A Helping Hand

As we've seen, when integers divide, they give an integer quotient. But what if we have two variables
that are integers and need their decimal quotient instead? We can't just add a decimal point like we
did with the 14 frogs earlier. How can we get a decimal answer if both of our dividend and divisor are
integers?

Well, perhaps you've heard of a 'casting call’ or an actor being "typecast’? Good. We'll simply apply
this technique to data types. We'll still call it "type casting’, but it won't be a bad thing like it is for an
actor. It'll be more like the actor being cast into a part.

How do we do it and exactly what’s going on here? Let's take a look:

short total_pizzas,
groups;

cin >> total_pizzas;
cin >> groups;

cout << "Dividing your " << total_pizzas << " pizzas into "
<< groups << " groups we get "
<< static_cast<double>(total_pizzas) / groups
<< "\npizzas per group.\n'";

Now, on the third line of the cout, we see the new syntax for typecasting a variable to act like a new
type (just like an actor is asked to act like a new role). The 'cast’ part should be clear. But what is the
rest? The static part makes sure this cast happens at compile time rather than any other time. This
refers to something that isn’'t moving like in the engineering course statics (as opposed to something
that is moving like in the engineering course dynamics).

Then you just put the type you want the data to act like in angle brackets and the variable or
expression you want to behave differently in parentheses. The amount of code inside the parentheses is
vital! If we had brought in the division by groups, we would have had a whole number quotient after all.
The reason is that the division would have been done on the integers before the cast to double.

(© Jason James @80 24 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.5. Program Design

This technique can also be used outside of arithmetic, so watch for it in other contexts!

2.4.5 Storing Results

Sometimes we don't just want a result printed on screen, but actually stored for later use. This might
be because we need the result used multiple times. Or it might be because we need it as part of a more
complicated calculation.

To do this, we use the assignment operator — a single equal sign:

pay_rate = 16.95; // set hourly pay rate to the right number of $/hr

While this looks like the same syntax used to initialize a variable or constant, it is really a different
thing to the computer. Note that we aren't declaring the type of the variable here — just setting it to
a new value.

Also note that this is not an equation. It does not profess that the two sides are equal. It says to
make the left-side variable take on the right-side value. The right side can be a literal value like we have
here or a calculation expression. We can do things with this operation like update a variable in place:

count = count + 1; // make count one more than it started

This doesn’t say count is equal to itself plus one, but rather to change the count variable to be one
more than its current value. The right side is evaluated first and then the result is stored in the left-hand
variable.

Thusfar our calculations have been pretty simplistic and so we don't have an example to do this
Jjustice, but please keep it in mind as we develop more advanced programs in the future.

2.5 Program Design

Speaking of developing programs, how do we do that?

The process is much like that of doing word problems from a math text except that there are very
few numbers given in the problem aside from constant values. Here is a synopsis of the basic process:

/*
Read the problem statement. Come to understand what you
are asked to do. Identify variables necessary and name
them. Decide what type of information each will hold.
Locate/derive any necessary formulas.

Start your code:

*

*

*

*

*

*

*

* #include necessary libraries

* using directive

ok inside main:

* declare variables (declaration statement(s))
* greet user (optional) (cout statement)

* prompt the user (cout statement) --___(s)
* read inputs (cin statement) --/

* calculate answers (assignment statement (s))
* print answers (echo inputs?) (cout statement (s))

* say goodbye (optional) (cout statement)

(© Jason James @80 25 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.5. Program Design

[J

As you can see, the general flow of actions is prescriptive and not subject to much change. However,
the details inside each step can become quite complicated. Prompting and reading inputs, for instance,
can take quite a bit of work on larger programs. Printing the answers can be pretty intricate as well, if
tables or other such formatting is involved. (And what is 'echoing the inputs'? Well, that just means
printing the inputs back out to the user as a sort-of verification that we understood them correctly. It
doesn't really do anything useful, but it makes many users feel better.)

Note how we declare all the variables at the top of the main function — inside the main function, in
fact. Make sure not to put any declarations outside the main function. If you do, they are called global
variables instead of being local to the main function only. When we start to write more than one function
in a single program, global variables would make things much more complicated and we'd like to avoid
the potential problems it can cause.

Global constants, however, are acceptable because they cannot be changed. It is the changeability
of the variables that makes them troublesome.

2.5.1 An Example

Let's say that a ranger station for the forest service has contacted us to make a helper program to track
deer in their park. It seems they need to make predictions about how many deer are going to be in the
park in spring given data from last spring and fall. They need these numbers to prepare enough hay to
feed the deer over the winter and into the early spring until normal vegetation returns.

We can start by reading in these values and producing a projected growth rate. A growth rate is
calculated as either a percent or a multiplicative value. We should probably use the percent for interfacing
to the ranger but we'll use the multiplicative form internally for predictive calculations.

With this in mind, we come up with the following variable declarations:

short deer_last_fall, deer_last_spring;
double growth_rate_mult, growth_rate_pcent;

And we know how to calculate a rate from two population values, right? Just divide:

growth_rate_mult = deer_last_spring / deer_last_fall,;

And converting this to a percent isn't too hard, either, just subtract 100% (aka 1) and multiply by 100:

growth_rate_pcent = (growth_rate_mult - 1) * 100;

Let's put this all together with input and a report:

#include <iostream>
using namespace std;
int main()
{
short deer_last_fall, deer_last_spring;

double growth_rate_mult, growth_rate_pcent;

cout << "\n\t\tWelcome to the Deer Projection Program!\n\n";

(© Jason James @80 26 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.5. Program Design

cout << "Please enter last fall's deer population: ";
cin >> deer_last_fall;

cout << "Please enter last spring's deer population: ";

cin >> deer_last_spring;

growth_rate_mult = deer_last_spring / deer_last_fall,;
growth_rate_pcent = (growth_rate_mult - 1) * 100;

cout << "\nThe growth rate from fall to spring is typically "
<< growth_rate_pcent << "%.\n";

return O;

Now, this is just half the program, but we already have enough to test. Compiling and running it, we
find that the result is always something like +£100%. Where are the decimals?

Looking at our calculations in more detail, we find that the multiplicative growth rate is being calcu-
lated by dividing two integers! This gives, of course, an integer answer — not a decimal. To solve this
problem, we need to typecast one or the other of the populations to double.

Why not change their data types to double instead? Because we don't want parts of deer running
around the park, now do we? If the data types were double, the user could inadvertently enter a
fractional number of deer. This is not only erroneous, but kinda gross! Typecasting the calculation is
definitely the way to go:

growth_rate_mult = static_cast<double>(deer_last_spring) / deer_last_fall;

With this change in place, our program runs as expected!

Now we can move on to the second phase: projections. The ranger also wanted to know how many
deer there might be this coming spring given this fall's numbers — using the previous year’'s data as a
predictor.

To do this calculation, we use our multiplicative growth rate and a new input (this fall's deer popu-
lation) and get next spring’s potential deer population:

deer_next_spring = growth_rate_mult * deer_this_fall;

Depending on your compiler settings, however, this might give a warning that a double is being
stored into a short memory location and might lose data. This is true, so we can either take the hit or
deal with the decimals somehow. Taking the hit can be done without the warning by typecasting to let
the compiler know we intend to lose the data:

deer_next_spring = static_cast<short>(growth_rate_mult * deer_this_fall);

Note the scope (parentheses) of the cast is the entire product. If we had cast just the growth rate,
we would have lost all decimals there before the multiplication!

Upon further reflection, however, this seems wrong. What about those partial deer still in their
mommy's tummys? don't they deserve to be fed as well? Let's come back once we have the proper
library support to tackle this problem.

(© Jason James @80 27 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

Until then, practice your skills by taking the idea we just put forth of truncating with a typecast into
the program already developed. Don't forget the new input!

Should you put it with the other inputs or after the growth rate report? This is the kind of design flow
decision you'll be faced with regularly. Sometimes you have an end user to consult — like the rangers
here — but not always. This time we have to rely on our own judgement. Maybe try it both ways to see
what seems the most fluid to use.

2.6 Standard Libraries

We've already seen the iostream library’s cout and cin objects (an object that represents a real-world
entity like the screen or keyboard) and its insertion and extraction operators. But what other libraries
are there in the standard and what might we use from them?

In this section we'll explore many of the standard libraries and their capabilities. But our treatment
will by no means be exhaustive! If you want a complete list at sometime in the future, try out cpprefer-
ence.com. They are a great source for reference as they are really thorough and the place the standards
committee members seem to hang out. Although not a great place to learn things — they aren't set up
for introductory education — they can quickly get you up to speed on something you are familiar with
but have lost track of the details on.

2.6.1 Calculating the Time of Day

One task the user will expect of most any device is to be able to display the current time of day to them.
This sounds trivial, but is actually quite a bit of work.

We'll start with the ctime library. This library’s name starts with that c because it is an ancestral C
language library we've inherited. Inside this library is just one thing we'll need: the time function.

The time function reports the number of seconds from a particular point in the past. Unfortunately,
this point is rather esoteric: midnight on January 1, 1970. This point in time is known as the computer
epoch or just epoch for short. To further complicate things, it is measured not from the local time zone
but always from Greenwich, England! That is the zero meridian on the globe, after all. And due to the
way computers are manufactured and distributed world-wide, it is far easier to have all of them measure
time in the same way rather from their local installed time zone.

So, how do we accomodate for these things? Let's start with the epoch issue and then come back
to the GMT (Greenwich Mean Time aka UTC) issue.

Note that the number of seconds since the epoch contains not just today but a large number of days
before that.’®> We need to start by removing the seconds that amounted to whole days and just keep
the seconds left over that form today. That is, the remaining seconds..? Yes! Modulo to the rescue!

Here's the start of it:

constexpr short sec_per_min = 60,
min_per_hour = 60,
sec_per_hour = sec_per_min * min_per_hour,
hrs_per_day = 24;
constexpr long sec_per_day = static_cast<long>(sec_per_hour)
* hrs_per_day;

long sec_today = time(nullptr) 7 sec_per_day;

13Years and decades, in fact, but let's not dwell on it.

(© Jason James @80 28 of 361

EY MG TR

https://cppreference.com

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

Wow! That's a lot of code to just get the seconds for today! What's all going on? Well, we start by
setting up some constants for the calculation. The basic units are seconds, but we'll also need to know
how many of those there are in terms of the other units involved: minutes, hours, and days.

Note how we don't just type in 3600 for the seconds in an hour but let the computer calculate it for
us. This is important because many problems occur because of simple typographical errors. Transferring
3600 from your calculator to the source code can turn it into 360 in a flash! Over my years of teaching
I've lost track of how many times I've seen this error in students’ codes. Letting the computer do it
saves us these headaches and makes for more readable code. We can see how the units cancel in the
product taken and that makes it more easily verified.

What's happening on the seconds per day, though? Why is it long instead of short and why the
static_cast? Well, we are just using normal arithmetic knowledge. In multiplying two two-digit numbers
earlier (60 * 60), we know the result is at most four digits long. All four-digit integers fit inside a short
integer so we are fine. But when we multiply this four-digit number by another two-digit number, we get
a potentially six-digit number! That can't fit into a short integer and so we have to escalate to long.

So why the static_cast? Well, when we multiply two short integers, the computer is allowed to
turn them into int-style integers instead. This is because int is the fastest type on any given CPU
and the standards committee is wanting your code to run as fast as possible. Unfortunately, this means
the result is also an int and on some systems an int can't hold six digits! To protect our result, we
typecast one of the short integers into a long so that the product actually takes place in long integer
space instead of int space. This makes sure there is room for all the digits.'*

Finally we get to the calculation itself and find more craziness. What is this nullptr thing and why
is it being sent to the time function? Well, time takes an argument that can be either nullptr or
some legitimate address in the system. Since we are not set up to learn about addresses in a computer’s
memory system (RAM) here, we're going to use the constant nullptr to signal that we don't want to
use that feature of the function. We just want the seconds returned.

After getting the seconds since the epoch from the time function, we mod-off (take a modulo) by
the number of seconds in a day to find the seconds that remain after whole days are accounted for.

Now all that remains to do (pardon the pun) is to break these seconds for today into hours, minutes,
and leftover seconds. Let's give that a try, shall we:

short hour = sec_today / sec_per_hour,
min = sec_today 7 sec_per_hour / sec_per_min,
sec sec_today J sec_per_hour J, sec_per_min;

This is a little complicated, so let's take it step-by-step. The hour isn't too bad: just divide by the
seconds in an hour to get the number of whole hours. But then the minutes needs to start by modding®
by the seconds in an hour to find out how many seconds didn't form whole hours. Once this is done,
we take those seconds and count the number of whole minutes with division. The seconds takes that
remaining seconds after hours are counted and mods it by the seconds in a minute to find that remainder.

But we are counting the seconds that don't form whole hours twice. Why not do that just once?
Good idea! This kind of calculation is called 'caching the result’. We make a quick helper variable —
not to be one of our final outputs — and store the cached result in it. This keeps the computer from
redundantly calculating the result over again:'®

141t turns out that this result is just five digits long, but it is too large to fit in any short memory space accurately, so...

15This is the colloquial form of "taking a modulo with”. We could also say " modding off by”.

16 Although most computers these days are smart enough to just look up the previous result in what is called a register —
a tiny piece of memory right on the CPU — rather than repeat the calculation, it never hurts to make sure this is possible
by using a cache variable.

(© Jason James @80 29 of 361

Exploring C++: The Adventure Begins

Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries
short hour = sec_today / sec_per_hour,
sec_not_hour = sec_today 7, sec_per_hour,
min = sec_not_hour / sec_per_min,
sec = sec_not_hour 7 sec_per_min;

Is this lining up of the equal signs really necessary? No. Some people find it pretty and more readable.
Others say it is a waste of time to type all those spaces in. I'm letting you (or your teacher) decide, but
I'll probably keep doing it this way in this book because | find it more readable and prettier myself.

Now that we've got the time of day calculated, we can print it out for the user:

cout << "The time is now " << hour << ':' << min << ':' << sec
<< ”.\Il”;

But when we run it — sometimes — we get results like this:

The time is now 3:5:8.

\.

This doesn't look normal or good. Where are the extra zeros we've come to expect on the minute and
second fields? Since leading zeros are insignificant, the computer leaves them off. Why bother, right?

How can we make the computer understand that here the zeros are important to us? This can be
done in two ways. Both depend on library help, but one is available with just iostream tools which we've
already got #included.

What we need to do in either method is to tell the computer to fill in extra space in a printing 'field’
with a certain character. A field here is just a fancy name for a piece of data. The terminology comes
from designing whole tables of output where each item looks like field or cell from a spreadsheet. So we
need to first define a field by its width — how wide should that table column be:

cout << "The time is now " << hour << ':';
cout.width(2);

cout << min << ':';

cout.width(2);

cout << sec << ".\n";

Here we've set the minute field and the second field to both be 2 characters wide. The syntax is a
bit freaky, though, isn't it? When we called’” the time function, it looked almost like using a function
in math: name, parentheses, inputs inside. But, of course, we used a strange constant for the input
to time. *shrug* Here, the second part doesn't look so bad: width(2). But what's with the first bit:
cout.? Well, it is saying to the width function that it should also be doing its work with respect to
the cout stream.® So, in general, when we want to call a special function like width, we have to call
it (the parentheses and inputs) with respect to (the period or dot operator) an appropriate object (like
cout here).!® This part is read, oddly, from right to left which is different from most of the language so
far. (Don't worry, there will be more right-to-left pieces later!)

But this still just prints the output like so:

The time is now 3: 5: 8.

17"Remember, when we invoke or evaluate a function, we say we've called it. This is a phone metaphor, clearly. The
function is on the other end of the phone connection and we provide inputs by telling it what we want it to work with —
these are listed inside the parentheses on the call. Then, the function gives us the answer before the call is disconnected.

18Stream? Yes, remember that cout is the console output stream — hence the iostream library name.

19Further, cout is known as the calling object here. |.E. the object that called the function or the object with respect to
which the function was called.

(© Jason James @80 30 of 361

Exploring C++: The Adventure Begins

Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

The default fill character is a space when data is too narrow to fill the field width for itself, you see.
So we have to tell the computer we want to fill with something else — a digit 0 here:

<< "The time is now
.£i11('0");
.width(2);
<< min << ':!
.width(2);
<< sec <<

cout
cout
cout
cout
cout
cout

" << hour << ':';

n . \nll ;

The fill has to be a character, of course — not a number and not a string — thus the single quotes
and not double quotes.

Why do we call the £i11 function only once and the width function twice, though? The fill character
is set on a once-and-forever basis whereas the width of a field changes from one field to another and
so is automatically reset to 0 — just the width of the data — after every individual print or display. So
once the minute has been printed, the field width resets to 0 and the colon isn't widened.

Now the result will finally be the more pleasing:

The time is now 3:05:08.
Now, in the spirit of section 2.5, let’s look at that as a whole program:
#include <iostream>
#include <ctime>
using namespace std;
int main()
{
constexpr short sec_per_min = 60,
min_per_hour = 60,
sec_per_hour = sec_per_min * min_per_hour,
hrs_per_day = 24;
constexpr long sec_per_day = static_cast<long>(sec_per_hour)
* hrs_per_day;
long sec_today = time(nullptr) 7, sec_per_day;
short hour = static_cast<short>(sec_today / sec_per_hour),
sec_not_hour = static_cast<short>(sec_today ’ sec_per_hour),
min = sec_not_hour / sec_per_min,
sec = sec_not_hour 7, sec_per_min;
cout << "The time is now " << hour << ':';
cout.width(2);
cout.fill('0"');
cout << min << ':';
cout.width(2);
cout << sec << ".\n";
return 0;
by

(© Jason James @80

31 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

| added static_casts to the hour and sec_not_hour calculations to suppress warnings about long
to short conversions losing information. It is plain to see that these calculations result in small integers
well in the short range, so this is safe. (I left them off above because it would have just complicated
our discussion of the modulo and integer division. Sorry to mislead you at first...)

If you compile this program and run it in your local environment, it should work beautifully. Hopefully,
with a couple more examples like this, you'll soon be writing your own programs from either our fragments
or even from scratch!

But what about the second library? We'll come back to that shortly.

2.6.2 Beyond Simple Arithmetic

If you have need of math beyond division (and modulo!), say, exponents or trigonometry functions or the
like, then you need another library: cmath. This is another library we've inherited from our C language
ancestry. It contains many useful functions from different fields of mathematics. We'll explore a few of
them that might prove useful in your current or upcoming courses.

Let's start with a table and then explore some issues with particular functions:

Function Notes
pow(base, exponent) | raise base to the exponent!” power
sqrt (x) take the square root of x
abs (x) take the absolute value of x
exp (x) take the natural logarithm base (e) to the x!" power
log(x) take the natural logarithm of x (base €)
log10(x) take the common logarithm of x (base 10)
log2(x) take the logarithm of x (base 2; useful in computing)
sin(x) find the sine of the angle x
cos(x) find the cosine of the angle x
tan(x) find the tangent of the angle x
asin(x) find the angle whose sine is x
acos (x) find the angle whose cosine is x
atan(x) find the angle whose tangent is x
atan2(y,x) find the angle with point (x,y) on its leading ray
floor (x) give the largest integer less than or equal to x
ceil(x) give the smallest integer greater than or equal to x
round (x) give the nearest integer to x

2.6.2.1 Powers and Logarithms

Why not start the details with the first function: pow. This function has two inputs — not like most
functions you've experienced in math so far. But they have a clear role and order. You just separate
them with a comma (kind of like the declaration of multiple variables of the same type at once). Both
of these numbers (in fact all the inputs to the cmath functions) are doubles and so the exponent can
be decimal to find roots as well as normal powers.

sqrt (x) is like pow(x, .5) but faster because it has been optimized for the % power. If you really
need it, there is also a specialized function for cube roots: cbrt.

The abs function can be used instead of taking the square root of the square. It isn't alone, either.

(© Jason James @80 32 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

There is also an older function you may find in many example codes around the web and elsewhere: fabs.
This function is so named because it took specifically the absolute value of floating-point numbers. But
the committee has since broadened the role of absolute value to all numeric data types.?°

The exp function is fairly self-explanatory. But log and log10 might warrant a little detail. We're
not sure why, but they've named /n — the base-e logarithm or natural logarithm — as if it were the
base-10 logarithm — aka common logarithm — and then named the common logarithm all funny. It is
just a detail that needs to be remembered and it will haunt you in several different languages — not just
C and CH++.

2.6.2.2 Trigonometry Functions

The trig functions finding the trig values are pretty straight-forward (save for a detail below). But people
often are confused as to the names of the inverse trig functions. Why the a instead of ani or a -1 or
some such? Isn't inverse sine just sin~! now? Well, yes, but it hasn't always been. Back in the day
— when C was being standardized — they were called the 'arc’ functions. |.E. arcsine, arccosine, and
arctangent.?! Hence the odd a in their names.

The trig functions, of course, all deal in radians only. But your typical user is focused solely on
degrees. For this conversion back and forth, we'll need a ™ constant. But there won't be one until
C++20 makes its way into the mainstream.?? Until then, we can use the atan2 function to get a value
for m by doing something like this:

[const double pi = atan2(0, -1); // the best way to create a pi constant

This says find the angle whose leading ray has a point at (—1, 0) — an arbitrary place on the negative
X axis. Just note that the x and y are reversed. This has to do with the formula for tangent and some
crazy design issues with sending inputs to this function from long ago. We just have to deal with it by
memorizing it. *sigh*

2.6.2.3 Rounding Numbers

Finally, let's talk rounding. floor is used

to round a value down to the previous in-
teger — unless it is already an integer in
which case it is unchanged.

The round function — for rounding to
the nearest integer, on the other hand, is

Mathematical Notation

floor and ceil are actually regular mathematical functions as well
and have interesting notations. floor is represented by |x|. See how
the brackets have just lower bars like they are the 'floor' of the room.
Similarly ceil is represented by [x] where the brackets only have top

relatively new (C++11). It works well, but

. o X bars like a ceiling.
before that time, we didn’t have a simple

function for this need. So older code will
often rely on the floor function for this
purpose.

The reason is that the two are nearly the same mathematically speaking. One is just the other shifted
left half a step. Thus we can get a rounding to the nearest effect by taking the floor of x shifted half a
step: floor(x + .5). (Remember that shifting a function left requires adding an offset and shifting it
right requires subtracting an offset!)

20 Actually, there were other functions for absolute value in a separate library for just the integer types — like labs for
long integers. This confusion got to be too much to teach those new to C++ so the committee made the name abs work
for all the numeric types instead of having them all have separate names.

21Thijs has to do with the arc at the end of the angle on the unit circle. If you don’t get this, don't worry, trigonometry
isn't required to complete this book successfully.

22There is the M_PI constant that many teach, but it isn't found in either the C++ or C standards. It just happens to
be there most of the time. Not good to rely on things that aren’t even supposed to be there, though. So | recommend the
above method.

And if you have C++4-20, just #include the numbers library and a double version of 7 is given by numbers: :pi.

(© Jason James @80 33 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

Here's a plot of floor(x) (blue), round(x)
(yellow), and floor(x + .5) (green):

|'ve offset them vertically so they didn't overlap
but are instead visibly distinct. As you can see, the
round and shifted floor are identical.

Finally, ceil rounds up to the next integer —
unless the value is already an integer in which case
it is unchanged.

None of them is set up to round to anything
but a whole value — no decimal places by default.
(This is in contrast to the fact that they all return
a double. But some integers can't be stored in
even a long so double was used before long long
came about.) To round to a decimal value, we need to scale the value in question. Let's say we wanted
to find the nearest % to the value 3.721. We would divide out all the thirds to make this based at the
ones position (as in hundreds, tens, ones digits of a number). Then, once rounded, we'll scale it back
out to where the thirds are:

[round(3.721 * 3) / 3.]

Note that dividing by % is the same as multiplying by 3.

Scaling by fractions is good, but we can reverse it to get other rounding positions as well. We could
round to the nearest quarter hour (15 minutes) like this:

[round(time / 15.) * 15]

Note that we've put a decimal point on the first 15 to make it a double so that we get decimal places
to round. time is undoubtedly an integer and so dividing by just 15 would truncate to the quotient.

So, in general, we can round down, nearest, or up to any position by:

Function Call Notes
floor(x / position) * position | round down to earlier decimal position
round(x / position) * position | round to the nearest decimal position
ceil(x / position) * position | round up to next decimal position

Either the x or the position must be double for this to work, of course. If the result is expected to
be an integer — and it'll fit in an actual integer data type — you can cast the result to the appropriate
type:

[quarter_min = static_cast<short>(round(min / 15.) * 15);

2.6.2.3.1 An Example Continued
Now that we have full rounding capabilities, let's go back and tackle those decimal deer, shall we?

We had this calculation causing us moral/ethical issues:

deer_next_spring = static_cast<short>(growth_rate_mult * deer_this_fall);

Recall that the deer variables were short and the growth rate was a double.

(© Jason James @80 34 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

But this was truncating the decimal deer that might be gestating inside the female deer. But now
that we have round, floor, and ceil, we can take care of it. We just have to decide which function is
right for our circumstances.

The round function seems good at first glance. And we might try it out like this:

[deer_next_spring = round(growth_rate_mult * deer_this_fall);

Don't forget to #include cmath!

But this gives a warning like we got before we added the static_cast! Remember that we said all
these functions return a double even though they round to a whole integer. This is because some integers
are too large to fit in a long and long long wasn't available when these functions were designed.??

So, we'll have to have the static_cast as well as the round call:

deer_next_spring = static_cast<short>(round(growth_rate_mult
* deer_this_fall));

That gets rid of the warnings on those pickier systems. Is it safe given that some integers are too
large to fit even in a long? Well, we are starting with a short number of deer and multiplying by
something most likely in [0, 2], so it should be safe enough. If we were really worried, we could change
deer_next_springto long and change the static_cast likewise. This would keep things whole-valued
but make sure they are large enough even if we started with a ridiculous number of deer in the park. (I'm
not thinking Yosemite here, but a smaller, local type of park.)

Anyway, testing shows this works okay, but there are circumstances where we notice that rounding
down occurs. Shouldn’'t we be feeding those deer that are gestating and not quite ready to come out?
They don’t eat quite as much, but they do need sustenance!

So, we think of, perhaps, floor next. Well, that one is right out the window because it truncates to
the previous integer — if we aren’t already one. That definitely won't help the gestating deer babies.

That leaves ceil. This, then, seems perfect! It will round up to the next integer unless we are
already an integer. That'll give all those partial deer a fighting chance! The code we end up with, then,
is:

deer_next_spring = static_cast<short>(ceil(growth_rate_mult
* deer_this_fall));

Again, put this change into the original program to run and test. (And don't forget to add an include
for cmath for our new call to ceil...)

That's pretty much it for the cmath library. Next up is random number generation!

2.6.3 Random Values

Of course, the computer can't really generate truly random values. However, it can do a darn good
job! It can fool even many statistical tests of randomness. The science of how this works is beyond the
scope of this book, but if you care to study discrete mathematics or number theory more, that's where
you can get into it. We call these sort-of random numbers pseudo-random numbers and their generators
pseudo-random number generators (PRNG).

First, we'll need the library cstdlib. This is where we'll find the two functions and the constant we'll
need to make random values in the simplest way in C+4. (There is a much more complex way, but we'll
hold that off until later.)

23\Well, except for round. It was kept double for sake of symmetry, I'm guessing.

(© Jason James @80 35 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

We'll start with the rand function. This function generates a pseudo-random integer between 0
— inclusive — and a constant called RAND_MAX. The constant value may or may not be included in
the randomly generated values. It depends on how your library implementer interpreted the original C
standard for the function. It was apparently a little fuzzy in its wording. To compensate for not knowing
how this was done, we will simply mod-off by a smaller value to make sure we know what the upper
bound really is.

2.6.3.1 Integers

First, let's generate random integers in a useful range to our program. We might want random dice rolls
or random cards from a deck or any number of such things. We'll generally say that we want to generate
an integer value between a and b.?* We start by modding-off by the number of values in this range.
That tells us how many values from 0 to some maximum we need. Then we add the value of a to shift
the values to the right starting position.

But how many values are in the range [a..b]? That would be b — a+ 1. This is due to a famous
idea known as the fence-post problem. The number of fence segments that can be made with n fence
posts is n— 1. It takes two posts to make a segment of fence, but one of the posts is reused in the next
segment as well. But if we put up, say, 5 posts, there are only 4 segments since the end posts have no
mates out to the side to hold up the fence slats.

What does that have to do with the number of values between a and b inclusive? Consider the posts
numbered from 1 to n. We just subtracted the one from the other because only one end post was being
included. The other one had no following post to connect to. So, when we have a half-inclusive range
— [a..b) or (a..b] — we need just subtract the beginning from the end to count the number of discrete
values in the range. Note that when we just subtract the values from one another — b — a — you
remove not only the values before a, but also the value a itself from the count. (5-3 removes 3 values
— not just 1 and 2.) So, if we are being inclusive of the end a, we have to add it back in with a +1.%5

So, all-in-all, we have this code to generate an integer value between a lower-bound a and an upper-
bound b inclusive of both ends:

[rand()%(b—a+1)+a]

Note that the rand function itself has no inputs but still needs parentheses next to its name to be
called. This pattern will work whether the values are positive, negative, or even 0.

2.6.3.2 Character — ASCII — Values

To generate random letters or punctuation, we'll need to generate random ASCII codes. Since the codes
themselves are integers, we'll just use our prior formula. But, since we won't know the codes directly,
we'll use a little typecasting magic to get the computer to tell them to us!

static_cast<char>(rand() % (static_cast<short>(b)
- static_cast<short>(a) + 1)
+ static_cast<short>(a))

Here we've cast each character end-point to a small integer to get its ASCII code so we can do the
range and shifting math with them. Then, having generated a random integer in the proper ASCII code
range, we cast it back to a char at the end. Voilal

24Mathematically, we're making a value in the range [a..b]. The .. denotes a discrete range rather than a continuous
one. Continuous ranges are designated with commas.
25To complete the picture, we need to subtract one from the difference if neither end is to be included in the range.

(© Jason James @80 36 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

2.6.3.3 Logical Values

There are only two logical values to generate: true and false. But, we can generate them in different
proportions to one another. For instance, using typecasting, we can easily get a 50:50 split of the values:

static_cast<bool>(rand() % 2)

This takes a randomly generated 0 or 1 and asks for it to be cast to bool. The 0 always turns into
false and anything that isn't all O bits — the 1 here — turns into true. (Only O is represented by a
run of O bits. All other numbers need some 1 bits to tell their proper magnitude.)

This realization makes changing the proportions pretty easy. Say we wanted 75 trues to every 25
falses, we'd code:

static_cast<bool>(rand() % 4)

Here, the 0 still becomes false and the 1, 2, and 3 become true values since they are not all 0 bits.

But how to reverse the proportions? Say we want 75 falses to every 25 trues? Here we need a
little help. Let me introduce you to the logical operator !.26 This operator is unary — it applies to just
one thing (or operand). And its purpose is to take the logical opposite of that thing. So, given a true,
I makes false as its answer. And vice versa: false becomes true under a !. (We pronounce this
operator 'not’ as being 'not true’ makes you false and vice versa.)

So, to reverse the proportions, we simply ask for the 'not’ of the casted value:

Istatic_cast<bool>(rand() % 4)

This gives the requested 75 falses to every 25 trues.

What about proportions that aren't nice integer spreads? We can do that, too, but it takes a little
more machinery. Let's come back in a minute...

2.6.3.4 Floating-Point Numbers

To generate random double values, we can take our knowledge of random integers and extend it another
step. Keep in mind that the upper-bound of all rand outputs is fuzzily included. So, to make sure we
know the upper bound, we'll mod-off by that prospective upper-bound:

rand() 7 RAND_MAX

This gives us a value between 0 and RAND_MAX-1 both included. Now that we know the upper bound,
we can turn that into a floating-point in the range [0, 1]:"

rand() 7% RAND_MAX / (RAND_MAX - 1.)

Note how we put the decimal point on the subtracted 1 making it a double under the division! And
since we've used the largest value that can possibly result from that modulo, we'll have an upper bound
of 1 now.

Next, we scale the upper bound to the desired range maximum. This isn't, however, b as you might
expect. It is b—a. Remember, this random range still starts at O right now. So we are still going to have
to add a to shift it into place. That makes the width of the range — in a continuous-like system — b-a:

26\We could use the keyword not instead, but we use the symbol because it is very common in existing code and you need
to recognize it and not freak out when you see it. *smile*
27Even though floating-points just approximate real numbers’ continuousness, we still use the comma here.

(© Jason James @80 37 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

rand() % RAND_MAX / (RAND_MAX - 1.) *x (b - a) + a

| went ahead and included the a-shift, but you see how the [0, 1] range changes to a [0, (b — a)]
range, right? And then adding a onto every possible value makes the range [a, b] as desired.

2.6.3.5 Logical Values Revisited

Now that we have random floating-point values in our tool belt, we can use them as probabilities and
make more diversely spread logical randomness!

If you haven't taken a statistics or probability course yet, don't worry. We aren't using anything
fancy. But everyone should know that all probabilities are in the range [0,1]. There is nothing more
likely than 100%. And you can't have something less likely than 0%. (Other percents exist, but they are
not probabilities.)

So, given that we want a situation with a probability p of true values showing up (and therefore
probability 1 — p of false values), we'll just make a random probability and compare to our desired
probability:

[rand() % RAND_MAX / (RAND_MAX - 1.) <= p

What's that funny symbol between p and the random [0, 1] value? That's how C+4++ programs
represent 'less-than or equal to'. We can't do the usual symbol on a plain text screen so we combined a
less than and an equal to make ours. Clever, no? Well, we thought it was...

Anyway, this <= test will come out true p * 100% of the time and false the rest. Try it with an
off-center value like 60%. (If you test with 50%, it is misleading and can lead you to use the wrong
comparison.)

2.6.3.6 Why Aren't My Random Values Changing?

Each time you run your program, unfortunately, you'll end up with the same sequence of values — over
and over again. They don’t appear to be truly random or even kind-of random after all!

That's for repeatability. This is useful in debugging and testing. If results — even random ones —
weren't repeatable, it would be mighty difficult to track down a problem!

Toward this end, the rand function actually always starts at a certain spot between 0 and RAND_MAX
and works from there through a sequence of values always guaranteed within those bounds. It has a nice
property, too, called a maximal period. This means that it won't repeat a value until all the values in the
range are used once.

Once you've debugged your program and are ready to deploy, you need to add one line to your
program. You need to call the function srand.

This function will 'seed’ or start the random sequence produced by rand in a different place than
normal. How do you tell it a seed, then that will change every time the program runs? Well, what value
do we already know that changes regularly — about every second? That's right! The result of time
from the ctime library! Let's use that:

srand (time(nullptr));

Recall the nullptr input that is necessary to tell time we don’'t want its optional behavior — just the
seconds returned.

There is one thing that can go wrong here, though. The result of the time function is a little different
than the type the srand function expects to see come in. srand expects an unsigned integer type and

(© Jason James @80 38 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

the time function’s result is signed. Why would the number of seconds ever advancing from the epoch
need to be signed, one might ask? Well, the data type associated with time — named time_t — is
also meant to be able to express times that came before the epoch. Of course those would be negative
with respect to that O-time.

So, what can we do? We cast the issue away! Knowing that the actual result of the time function is
always positive, we can safely cast it to unsigned without worry or harm. This makes even the pickiest
of compilers happy!

[srand(static_cast<unsigned> (time(nullptr)));

And, with that added to your source code, your values should be more visibly random now!

What? You've got a sequence coming out now of all the same value? Where did you put that srand
at, exactly? Oh! | see. Don't place it right in front of every rand call. Only place the srand once — at
the beginning of the main function. It never needs to be repeated. If you do, at the speeds computers
run these days — billions of operations a second — you'd see the same values repeated over and over
because you'd be restarting the random sequence over and over billions of times a second.

So always call srand just once — at the beginning of the main function. It can go before or after
the variable declarations as it doesn't involve any of your variables. The important thing is to do it just
once per program run!

2.6.4 Character Manipulation

Another thing that many programs will need to do is manipulate or somehow ’'calculate’ with char data.
Toward that end, the C language had a whole library. We've inherited it, of course. We call it cctype.
The extra c is for its C ancestry. The other c is for char, of course.

So what all is in this library? Let’s take a look:

Function Notes
tolower(c) return the lowercase form of char ¢
toupper (c) return the uppercase form of char ¢
islower(c) return true if c is a lowercase letter
isupper(c) return true if c is a uppercase letter
isalpha(c) return true if c is a letter
isalnum(c) return true if c is a letter or digit
isdigit(c) return true if c is a digit
isxdigit(c) | return true if ¢ is a hexadecimal digit
ispunct(c) return true if c is punctuation
isspace(c) return true if c is whitespace
isprint(c) return true if c is printable to the screen
iscntrl(c) return true if c is a control code

These, at least, are the heavy hitters of this library. We may not use all of them right away, but they
can all be useful from time to time.

These fall into two categories. Let's look at each in turn.

2.6.4.1 Transformation

The to*28 functions transform the input character into its upper or lower case form if it is a letter and
return that. If the input is not a letter, it is returned unchanged. The original input is unharmed in this
process.

28Here the * indicates multiple matches instead of an actual star or multiplication.

(© Jason James @80 39 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

There is one caveat — of course. The value returned is not an actual char. Our C ancestors were
so into speed, you see, that they used int heavily! (Remember that it is one of the fastest types on the
CPU.) This includes passing char values around as ASCII codes in int guise. So, to store a toupper,
for instance, result into a char variable, you'll have to do a little typecasting:

char yesno;
cin >> yesno;

yesno = static_cast<char>(toupper (yesno));

\.

This has the advantage that it doesn’'t matter what the user entered — upper or lower case — we can
respond to them consistently.

2.6.4.2 Classification

All the other functions there — the is functions — are for classifying a char as one kind or another.
The ASCII characters can be split — roughly — into printable and control characters. Control characters
are used inside the computer and its communications with other devices to control different processes.
These are classified by the iscntrl function.

The printable characters include spacing, letters, digits, and punctuation. (Remember that all those
crazy symbols like at signs and octothorpes and such are called punctuation, too.) The isprint function
distinguishes all these values at once from the control group. But, we can break down this set into smaller
groups as well.

Note that the isalpha function returns true for both upper and lower case letters whereas islower
is only true for lower case letters. All these letters are just the standard English alphabet. Sad when we
consider the number of alphabets and letters in use all around the globe, really.

The isdigit function works for the standard '0"' through '9"' characters. isxdigit, though, works
for not only these values, but also the values "A'/'a' through 'F'/'f'. These letters are included
because the hexadecimal base is 16 and we only use single position values to indicate 'digits’ in a number.
So "A'" would represent 10 in this system, 'B' would be 11, etc. up to 'F' would be 15. We need not go
higher than this, because 16 would be represented by '10" in base 16. (Indeed, the number '10" always
represents the base we are dealing with: 2 in binary, 3 in trinary, 10 in decimal, etc.)

2.6.5 More From iostream

There is more to the iostream library than just cout, cin, <<, and >>.

2.6.5.1 An Example Revisited

To explore, let's revisit the deer projections example from before. It turns out that some of the rangers
in testing are giving us problems with the inputs. They don't like stopping at the numbers we've asked
for! Some of them want to enter units of 'deer’ or worse, long sentences the computer just doesn't know
how to deal with. (Poor lonely folks. . .)

To alleviate this, we have two options. One is to jump ahead and use a string-type object (see
section 3.8.2). But that seems overkill since it would mean reading in and storing all that garbage the
ranger is typing that our program doesn't need or understand. Doing so would waste precious milliseconds
and bytes of RAM!

Instead, let's focus on an iostream tool: ignore. This function takes a variety of parameters that
can leave even the most steadfast coder confused, so let's take it step-by-step. First, it is called like the
£i11 and width functions from before except with respect to cin instead of cout.

(© Jason James @80 40 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

It's first variation is to take no parameters (inputs) at all:

cin.ignore();

This makes one character disappear from the input stream cin before we move on with the program.
Unfortunately for us, this isn't enough for our needs. The rangers are entering at least words if not more
— not single characters.

The second variation is to pass an integer and a special character that will be the last character to
ignore. This can look like this:

cin.ignore(10, '\n');

This tells the ignore function to throw away at most 10 characters but stop when a newline is thrown
out even if 10 characters haven't been dispatched. This would work for us if the ranger stops typing with
something short like 'deer’, but if they type much more, it won't be sufficient.

In fact, it isn't generally the thing to do because of a kind of hacking attack known as a buffer-overrun
attack. This attack finds out how many characters a particular input (cin) can handle and gives it more
than that to make the program break into administrator/superuser mode and give the hacker access to
such privileges.

To avoid both these issues, we need a special integer value to send to that first parameter. Luckily,
ignore is set up to take such a value! We'll send what's called a flag value — to raise or fly a flag to
signal to the ignore function that special circumstances are at play.

The value we need is the maximum possible value for the first parameter. In these circumstances, the
ignore function won't wait for that many — ridiculously large number of — characters before stopping.
It will understand that this is as close to o0 as we could code and treat it as a flag to read as many
characters as necessary to reach the special stop character — the second parameter.

The unfortunate part of this is the way we access the maximum value. It is a syntax nightmare for
new programmers. It starts by needing another library: 1imits. Then it uses this format:

[numeric_limits<streamsize>: :max()

What's with all these angle brackets and colons? Well, let's start at the beginning. The tool
numeric_limits informs us about all the properties of numeric types in C++. The type we are interested
in is the integer type streamsize. This one is for information related to how many characters can be
used in stream contexts like our input stream cin. So, like with static_cast, we put this type in the
angle brackets.

The double colon — or colon-colon as it is often read — is similar to the one we learned to
avoid with the standard namespace so long ago now. Recall that we could do a using directive
(using namespace std;) to avoid doing the syntax std:: in front of every library name we used in
our code. That colon-colon (or scope resolution operator) told the compiler to look inside the standard
namespace for the definitions of those names instead of in the current code.

This double colon is similar, it turns out that numeric_limits is a group of related information on
the numeric types’ properties. And so this double colon is saying that the max function is inside that
group of related information.

Such a group of related information functions and properties is known as a class. This is the C++
mechanism to make new data types that weren't known by the CPU originally. We'll learn in later
chapters how to make our own classes, t0o.

Anyway, that's quite the mouthful! That's also a lot of typing that could go wrong and cause you to
have to fix it and recompile. Since we want to use this after every input (>>), we'll want to make it more

(© Jason James @80 41 of 361

Exploring C++: The Adventure Begins

Chapter 2. Getting Started with C++ Programming Basics

2.6. Standard Libraries

palatable to type and read. | recommend a constant with a good name. Perhaps something like this:

constexpr streamsize INF_FLAG{numeric_limits<streamsize>: :max()};

This tells us it is the infinity flag and us using it in the ignore first input position will tell us its purpose:

cin.ignore(INF_FLAG, '\n');

So, that's a lot of changes and | haven't been very clear on where to put them all, so let's look at the
whole program once again. Here it is with both the rounding changes and our latest changes for input

issues:

{

#include <iostream>
#include <cmath>
#include <limits>
using namespace std;

constexpr streamsize INF_FLAG{numeric_limits<streamsize>::max()};

int main()

short deer_last_fall, // for creating the projection rate
deer_last_spring;

short deer_next_spring, // for the actual projection calculation

deer_this_fall;

double growth_rate_mult, // the projection rate in multiplicative

growth_rate_pcent; // and percent formats

cout << "\n\t\tWelcome to the Deer Projection Program!\n\n";
cout << "Please enter last fall's deer population: ";
cin >> deer_last_fall;

cin.ignore (INF_FLAG, '\n');

cout << "Please enter last spring's deer population: ";
cin >> deer_last_spring;
cin.ignore (INF_FLAG, '\n');

growth_rate_mult = deer_last_spring / deer_last_fall,;
growth_rate_pcent = (growth_rate_mult - 1) * 100;

cout << "\nThe growth rate from fall to spring is typically "
<< growth_rate_pcent << "7,.\n";

cout << "\nPlease enter this fall's deer population: ";
cin >> deer_this_fall;
cin.ignore(INF_FLAG, '\n');

deer_next_spring = static_cast<short>(ceil(growth_rate_mult
* deer_this_fall));

(© Jason James @80

42 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

cout << "\nThen I project the deer population for next spring
"will be " << deer_next_spring << ".\n";

cout << "\nThank you for projecting deer with us today!\n"
"\nPlease come again!\n";
return O;

If you don’t like the name of my constant, you can always change it for your own implementation.
I've been known to call it, for instance, UNTIL_YOU_SEE. This reads quite nicely in the ignore call itself:
cin, ignore 'until you see’ a newline. But others don't like this kind of flippant naming. *shrug* To
each their own, | suppose. ..

Anyway, note how the ignore follows every input of a number of deer. This avoids some rangers
penchant for entering units or discourse. What about those rangers that don't enter such things? Will
it break when they run it? No! It turns out that all input lines end with a newline. That's how cin

represents the user hitting [Enter]/[return]. So there will always be a "\n’ to stop the ignore. *bounce* |
just love it when a plan comes together, don't you? *smile*

2.6.5.2 Formatting Output

In addition to the £i11 and width we saw earlier in the time calculating example, there are many other
things you can do to format the output of a program using cout. Most revolve around displaying decimal
numbers.

Let's say you had a few decimal numbers in your program that you needed to display in a column —
lined up at the decimal points. Let’s say further that you've named them poorly as a, b, and c. Let's
start off having them hold the values 10, 5.6, and 2.129 respectively. Finally, let's say that the program
specification calls for there to be two decimal places on each number in the column. (This will help us
line up on the decimal point immensely!)

Our setup so far is this:

double a{10}, b{5.6}, c{2.129%};

cout << a << '\n' << b << '\n' << ¢ << '\n';

This isn’'t coming out very well at all:

10
5.6
2.129

But it is a start!

Let’s make them all the same width with our old friend width. Given the magnitude of our numbers,
we can guess that 7 would be wide enough to hold all our data in this column — even if we should we
get more values in future. Now our code looks like this:

double a{10}, b{5.6}, c{2.129};

cout.width(7);
cout << a << '\n';
cout.width(7);

(© Jason James @80 43 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

cout << b << '\n';
cout.width(7);
cout << ¢ << '\n';

And our output now looks like this:

10
5.6
2.129

Well, the data now lines up, but not on the decimal point. In fact, our data doesn’t all display with
decimal points. Nor do they all have the 2 decimal places we were told to display — one even has more!

To fix these issues, we need new helpers. The first is the cout function precision. This function
takes a parameter that sets — wait for it — the precision of all displayed decimal numbers. For normal
numbers this amounts to the number of decimal places. For numbers that resort to scientific (E) notation,
it means the number of precise digits. (To find out more on 'precise digits’, see your local lab science
teacher!) Since our numbers are pretty normal — not too large or small, we don't need anything more
than:

double a{10}, b{5.6}, c{2.129};

cout.precision(2);
cout.width(7);
cout << a << '\n';
cout.width(7);
cout << b << '\n';
cout.width(7);
cout << ¢ << '\n';

\.

Now our output looks like this:

10
5.6
2.1

Wait! What happened to the rest of the third value? The rules for this are ridiculously complicated,
but basically, since we didn't specify that the value was to be normal or scientific, cout had to go with
a mix of the rules. Let's be more specific. Let's set a flag flying that cout will interpret as a signal to
use a particular style.

Set a what? A flag. A flag in computer terms is a bool or even single bit that is true or 1 to signal
a special circumstance. Setting a flag is making it wave in the breeze — that is, making it true/1.

To do so we need two things: a function to 'set’ a flag (make it wave in the breeze — make it true/1)
and a name for our desired flag. Luckily both are provided by the iostream library. The function to set
a flag is setf. The name of the flag is ios_base: :fixed.?® This will make the style normal by fixing
the decimal point right after the ones place. (Recall that in scientific notation the decimal point is more
flexible and we just change the power of 10 to account for this.)

This name seems strange at first, but when you break it down you realize what's going on. The
fixed constant is actually created inside the ios_base class. The ::, you may recall, tells us that one
thing is inside another. The syntax of this is read from right to left: "the fixed constant is from inside
the ios_base class”.

29The related constant ios_base: :scientific is used to change decimal data to always be in scientific notation.

(© Jason James @80 44 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

To set it up to print normal numbers (with a fixed decimal point), we code:

double a{10}, b{5.6}, c{2.129%};

cout.setf(ios_base: :fixed);
cout.precision(2);
cout.width(7);

cout << a << '\m';
cout.width(7);

cout << b << '\n';
cout.width(7);

cout << ¢ << '\n';

\.

With that our output looks like this:

10.00
5.60
2.13

Why did the third value change? Well, even without calling the round function from cmath, cout
knows to round the displayed number when the variable's value is too long to fit the precision set. (If
the value of ¢ had been 2.124 instead, the output would have been 2.12 instead.)

Nice! That looks just fine.

2.6.5.2.1 The Rest of the Story

That's all well and good, but what if there are multiple programmers working on the code and they are
all setting different formatting options?

First off, that's just crazy! Multiple programmers on one program? That'd never happen! Actually,
that's the way most programs are written. Each programmer takes a part and the project head takes
everyone's codes and puts them together.

Second, why would the formatting change? Maybe one part of the program is intended for Federal
jurisdiction and the formatting has to change from the way your everyday citizen likes to see it. (*shrug*
It can happen. Don't ask so many questions!)

So, what would we do about that? We'd have to learn to play together nicely. To help out, the
formatting functions we've studied so far all return the values they were previously using before making
your change. How's that help? It tells us what the previous programmer had done and let's us record
that value and reset it after we are done!

Let's practice. Let’s say the programmer before us had set the filler character to be dashes and we
came along and wanted stars. How would we store and reset their filler character? To store the old filler
character, we'd need a char variable. Then, after we are done with our code, we'd call £ill again to
reset the filler to that value:

char old_fill;
0ld_fill = cout.fill('*x');
// do our stuff with stars

cout.fill(old_£fill);

(© Jason James @80 45 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

To make sure this is working as planned, flesh it out to a whole program and try it! Remember all
the parts:

#include <iostream>

using namespace std;

int main(void)

{
char old_£fill;
// original programmer sets up dashes for fill
cout.fill('-');
cout.width(7);
cout << 10 << '\n';
01d_fill = cout.fill('*"');
// do our stuff with stars
cout.width(7);
cout << 10 << '\n';
cout.fill(old_£fill);
// original programmer returns and expects dashes to continue!
cout.width(7);
cout << 10 << '\n';
return O;

}

If you try it, you'll indeed get:

————— 10

*okkkx10

————— 10

The currently set width is also returned from a call to width, but since it only lasts for a single
output, this isn't really a concern. The only other things we can change are the precision of decimal
numbers and the fixed flag.

The precision is returned as a streamsize value. (Recall streamsize from our ignore usage.)
So, to preserve another programmer’s settings for cout's precision, we'd need one of those and, voila:

streamsize old_precision;
old_precision = cout.precision(2);
// do our stuff with 2 precision

cout.precision(old_precision);

It looks almost just like the filler character example! Sweet!

(© Jason James @80 46 of 361

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

But what about the ios_base: :fixed flag? Well, that's slightly different. It turns out that there
are many potential flags cout can look for and they are all stored as a big group in a single variable.
When setf returns the old setting, it returns the whole group at once. To store them for preservation,
we have to use the ios_base: :fmtflags data type.

| know that one is shocking. First, it is a data type created inside a class — hence the scope
resolution operation (::). Second, it has a terrible, mushy name. When the C++ designers were first
working on C++ they were but idealistic C programmers. So many old C habits are exhibited in their
early efforts. But time heals all wounds and this one is pretty shallow, right?

So, let's look at this preservation pattern:

ios_base: :fmtflags old_flags;
old_flags = cout.setf(ios_base::fixed);
// do our stuff with fixed notation

cout.flags(old_flags);

Wait! Why is the last function flags instead of setf? | thought setf was to 'set flags flying'?
Well, it works for individual flags in isolated settings. But the function flags works for groups of flags
all at once. Since we stored all of cout's flags together in the o1d_flags variable, it only makes sense
to set them all together with flags instead of setf.

But what about that 'isolated settings’ thing |

said? Oh, well, when we are programming alone Fomere Camlbine

it is safe to use setf like we did. However,

when other programmers are around, things can Actually, when both fixed and scientific
go awry. What if another programmer had set notations are set on simultaneously, a new
up scientific notation for their part? Then, format called hexfloat is used. This prints
when we told cout to set the fixed flag, both the exact binary form of the decimal value
it and scientific's flag would be flying at the in base 16 (hexadecimal, remember?) form.
same time! What would cout do then?! It pretty Crazy, right?

much goes berzerk and pukes up on your screen. ™

shiver

So how do we fix this possibility? Well, we use masks. No, not face masks! What you might call a
flag mask. But, since the flags are often stored as single bits, we call them bit masks. The bit mask we
need is already defined — yep! you guessed it! — in the ios_base class. It's called floatfield. This
is because it encompasses both of the bit 'fields’ that deal with floating-point data formatting specifically.
(The field terminology will make more sense when we get to writing our own classes. Just use a flash
card to remember it. *smile*)

How do we use it? There is another form of the setf function that takes the bit mask as a second
parameter. We just call:

[cout.setf(ios_base::fixed, ios_base::floatfield);

That's it? Yep. That's it. Some things are actually relatively simple — even in programming!

2.6.6 Another Point of View
All of the above formatting and preservation of formatting just used the iostream library. But there
is another set of formatting commands for C4++ that come in another library altogether. Some are

(© Jason James @80 47 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

clunkier, but others are more streamlined in their application. Knowing both, you can decide which you
like best.

This other library is called iomanip and is used to manipulate the input/output system in various
ways — formatting it.

Having #included iomanip, we can use substitutions that insert into the stream with the normal
output operator (<<). For instance, we could set the precision of further decimal outputs with the
setprecision manipulator:

[cout << setprecision(2);

There are also setw for setting the width, setfill for setting the filler character, and setiosflags
that acts like setf. However, setiosflags doesn't have the alternative form with the mask-out and
might end up setting both fixed and scientific at once, for instance.

Further, there is a minor issue with setw that bears mentioning. We saw before that the precision
function takes and returns a streamsize-typed value. This is true of width, as well. But setw takes a
raw int instead. This is fine if you are providing the parameter to setw literally, but if using a variable
of type streamsize, the compiler might have an issue since the typical bit-size of streamsize is a bit
larger than that of int.3° You could fix it with a static_cast or just use width instead. It isn't as
fluid as setw, I'll admit. But it is type-safe.

What's the problem with setfill and setprecision? Nothing. Their names are just longer. No
big deal.

But don't forget that to use any of these manipulators, you need to #include iomanip at the top
of the source code file!

2.6.7 And Back to iostream

What? There's more in iostream still?! Yep. It's the library that keeps on giving!3!

2.6.7.1 Manipulating Line Endings

You may have found online people using a manipulator called endl to end their lines on couts like so:

[cout << "stuff on the line" << endl;

This manipulator is a combination of inserting a newline and an operation called f1ush which makes
cout display immediately. Why wouldn't it always display immediately? Normally cout waits to display
until it has about 2000 characters — a full standard text screen of data. This makes the display faster
given the discrepancy between the CPU’s gigahertz speeds and the screen's hertz speeds. We call this
holding area where the 2000ish characters wait the buffer.

In addition to a full buffer, cout will also display at two other occasions without being flushed. It
will display its current content when cin is trying to read an input. This is because cin tells cout of
impending input so that any waiting prompt for the user can be displayed first. Otherwise they wouldn't
know why the program had paused!

The other situation in which cout displays without being flushed is when the program ends — at
main's return. Otherwise the user wouldn't get to see all those last comments and results you'd printed!

So is endl worth the extra typing? (After all, sticking a simple \n into your literal string is much
simpler. Even if you add a "\n' after a variable output, it is the same number of keystrokes.) Some say

30Sorry for the bit pun. Couldn’t help it!
31Seriously, we've just scratched the surface of many of these libraries. There's so much more under the hood! Check
out cppreference.com sometime if you don’t believe me.

(© Jason James @80 48 of 361

https://cppreference.com

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.6. Standard Libraries

yes. But others point out that constantly forcing a display will avoid the benefits of the buffer and make
the CPU wait for more screen updates slowing down the overall program. Your mileage may vary, but it
isn't to my taste and | won't be using it further here.

2.6.7.2 Other Manipulators

But end1 isn't the only manipulator in iostream! There are quite a few more that mimic the flags you
can set with setf. We'll just mention those for the floating-point flags we've used so far and a couple
of others you might find immediately useful.

2.6.7.2.1 Floating-Point Display Manipulators

To make the decimal fixed after the ones position, you can use the fixed manipulator like so:

[cout << fixed;

Why, you may ask, have we not done this in the first place instead of using the clunkier setf method?
Well, we wanted to remind you of the scope resolution operator (: :) and show its usage in this context.
It also facilitated our discussion of preserving other programmers settings. The manipulator doesn’t
return the previous settings, you see. And, of course, we never want to pass up the opportunity to learn
something new and useful! *smile*

The other manipulator, unsurprisingly, is scientific and is used to set up display of floating-point
numbers in scientific notation. Again, this manipulator sends back no information about prior flag settings
— just makes the adjustment requested.

Don’t worry about the floatfield mask issue we mentioned previously, though. These manipulators
take care of that issue automatically.

2.6.7.2.2 Justification of Display Fields

In addition to floating-point displays, we can use manipulators to affect the justification of a display in
a certain width. Note that so far any width effects we've produced have right-justified the data within
that field. That is, the data was pushed to the right of the width and padding was added to the left.
The opposite can also be achieved. We can push the data to the left and have padding added to the
right with left-justification. To do so, merely insert the 1eft manipulator:

[cout << left;

To put it back to right-justification for a later width setting, just use the right manipulator in a similar
manner.

(For the curious, there are flag constants for justification that can be used with setf as well. These
are ios_base::left and ios_base: :right respectively. And remember, you are in right-justification
mode by default!)

For those thinking carefully here, you might wonder where is centering? Sadly, that is not a justifi-
cation setting. We'll discuss centering a little later when we learn more about strings and the string
class data type.

2.6.7.3 Reporting Errors to the User

Our last new item from iostream is the error stream cerr. It displays to the screen just like cout, but
instead of being buffered it displays everything you send it right away. After all, we only use it to display
errors — serious problems the user should know about immediately!

(© Jason James @80 49 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 2. Getting Started with C++ Programming Basics 2.7. Wrap Up

It will also come in handy during our debugging efforts later in the book so don't forget about it just
because it is seldom used in daily code!

2.7 Wrap Up

In summation, we've covered a LOT of information in this chapter! We learned how to make a basic
C++4 program with variables, constants, output, input, and simple calculations. We've even covered
many standard library features that can make our programs more powerful, helpful, and beautiful!

| hope this chapter end finds you well and not struggling. If you have any troubles, please see your
instructor or a qualified tutor for help! Don't just search the Internet. People are helpful there, but often
too helpful. They'll teach you things you aren't prepared for and even give bad advice at times. If you
must search, make sure you corroborate any advice with several sources and don't just trust the first
blog or other posting you find on a subject.

(© Jason James @80 50 of 361

EY MG TR

Part |l
Flow Control

3 Decision Making
3.1 Branching
3.2 Looping e
3.3 More About bool
3.4 Debugging with cerr
3.5 More Branching
3.6 More Looping
3.7 Nesting L
3.8 Standard Libraries Il
3.9 Even More Branching
3.10 Even More Looping
311 Wrap Up

4 Functions
4.1 When? Who? Where? Why? What? How?
4.2 Examples
4.3 SCOPE . . .
4.4 Arguments
4.5 Tools for Better Functions
4.6 Advanced Techniques
4.7 Warnings: What Notto Do
4.8 Wrap Up

51

Exploring C++: The Adventure Begins
Programming Basics

(© Jason James @80 52 of 361

EY MG TR

Chapter 3

Decision Making

3.1 Branching 53| 3.7 Nesting 75
3.1.1 if Statements 54 3.7.1 What Can Go in What . . 75
3.2 Looping 56 3.72 Examples 75
3.2.1 DeMorgan's Laws 58 3.7.3 What NOT ToDo 86
3.2.2 Back to the Problem. . . 58| 3.8 Standard Libraries Il 88
3.3 More About bool 59 381 OOPs. 38
3.3.1 DeMorgan's Laws and 3.82 Thestringclass 89
Efficiency 59 3.8.3 Processing exceptions . . 117
3.3.2 Generating bool Values . 60| 3.9 Even More Branching 119
3.3.3 Logical Opposites 60 3.9.1 The switch Branch 119
3.3.4 Equality and Floating-Point 60 3.9.2 The 7: Operator 130
3.3.5 Equality and bool 61 3.9.3 Factoring a Branching
3.4 Debugging with cerr 61 Structure 136
3.5 More Branching 62 3.9.4 Summing Up Branching . 137
3.5.1 Adding an else Clause . . 62 |3.10 Even More Looping 137
3.5.2 Multiple Alternatives . . . 63 3.10.1 doloops 137
3.6 More Looping 65 3.10.2 Range-based for Loops . . 138
3.6.1 Applications for while 3.10.3 Summing Up Looping . . 139
Loops. 65|3.11 WrapUp 139
3.6.2 Theforloop 70

It often happens that we need to make a decision in the flow of a program. Such a decision might
make some code run only under certain conditions or even to repeat itself under certain conditions. The
former kind of decision is called branching and the latter looping. We'll explore both of these kinds of
decision making in this chapter.

As we are making decisions here, we'll also explore the bool data type in more detail. We'll also
make sure you know bad practices and how to avoid them!

3.1 Branching

There are many ways to branch code in C+4. We'll start with an application that needs the simplest
form: the if statement.

53

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.1.

Branching

3.1.1 if Statements

Let's motivate our decision making by thinking about our poor user entering a dollar sign before price or
pay information. They don't generally want to do that, do they? Sure, we could put a "\$" in the prompt
for the amount, but then our program would be tied to the American economic system. We need to
think about internationalization in our programs almost every day!

To make our program work whether the user enters their monetary unit or not, we'll have to make
a decision as to whether they've typed it in or not. This needs not only an if statement as mentioned
above, but also a cin function to tell us what is about to be read. This function is named cleverly peek.
We call it with parentheses but nothing inside — like the one form of ignore we saw before.

cin.peek()

| didn't put a semi-colon on that example because we don't generally call it on a statement alone.
Usually we take its returned value and use it in some way. In our case, we'll be using it to see if there is
a monetary unit in the input:

p
double price;
char money_units;

if (ispunct(cin.peek()))
{

cin >> money_units;
}

cin >> price;

Note that we've used the ispunct function from cctype to determine if the peeked value is any kind
of punctuation. All the monetary symbols | know of are classified as punctuation in their locales.!

The if functions by testing the bool condition between its parentheses and, if this condition is true,
it executes the statements between its curly braces. If the condition is false, the statements in the
curly braces are skipped and the program just continues after the close curly as normal.? It's flowchart
looks like this:

ispunct(cin.peek())

false - -
|c1n >> money_un1ts|

|

The diamond in a flowchart stands for a decision. Our condition can be true or false so the arrows
coming out of the diamond are labeled with these so we know which way to flow when the condition has
each value.

Now the run of such a fragment will result in a user being allowed to enter either:

Prompt for price: $34.95

Or just:

1A fancy word for location — actually used in some programming tasks!
2Technically there need not be curly braces if only one statement is inside the if. But good style and good maintenance
habits demand that we put the curly braces on in almost all situations. There will be an exception, however. Stay tuned!

(© Jason James @80 54 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.1.

Branching

Prompt for price: 34.95

Nice! But what if the user puts anything — even a space — before their input? Then we won't be
peeking at the right value! We'll be seeing this space instead! This isn't good. It would cause the if
condition to fail and then the program might try to read a $ or the like as the price!

It wouldn't bother a simple extractor (>>), because it always skips leading whitespace. But it does
bother peek which respects all forms of char. How do we fix this? We need another helper. It is a
manipulator from iostream called ws. It removes a contiguous sequence of whitespace from the current
input position — stopping as soon as some non-spacing character is encountered. We'll use it like so:

double price;
char money_units;

cin >> ws;
if (ispunct(cin.peek()))
{

cin >> money_units;
}

cin >> price;

By removing the whitespace before we peek, we avoid the potential for there to be a miscommuni-
cation between our peek result and the actions of the following >> operation. After all, the following >>
operation would have removed all the leading whitespace, too, right? Therefore, we should do the same
before peeking.

But, there is one more problem: what if the user’s local custom is to put the monetary unit after the
amount instead of before? (Yes, that's a thing. Get out more!) Well, we can handle that with a slight
change and a second if:

double price;
char money_units{};

cin >> ws;
if (ispunct(cin.peek()))

{
cin >> money_units;
}
cin >> price;
if (money_units == '\0' && ispunct(cin.peek()))
{

cin >> money_units;

Okay, that's a little more than a second if. But let's take it one piece at a time. First, the empty
curly braces on money_units. This will initialize this variable to its default value. The default for the
char data type is the null character ("\O’, remember?). Using the empty-brace syntax saves us having
to type the escaped char literal ourselves.

Next we've used the operator == to test a variable's value. We're particularly interested on whether
the money_units variable is still unentered by the user. If so, we might be dealing with a trailing units
custom! Why is it two equal signs to test a variable's value instead of just one like we'd do in math?
Well, the compiler has trouble telling the difference between using a single equal to assign a new value
vs. using it to test a value. So, the designers of C (our ancestor language, you'll recall) made the test

(© Jason James @80 55 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.2. Looping

version two equal signs. This can be hard to remember, so watch out for a compiler warning that says
something like 'use of assignment in condition, did you mean to use == instead?’. The message won't
be exactly those words — the wording changes from one compiler to another and sometimes between
versions of a compiler. And your compiler won't necessarily be configured to warn for this by default. If
you'd like to force a message, you can turn it into an error situation by switching the order of your test:

["\O' == money_units

Then if you accidentally use a single equal, there will be an error as you cannot assign a new value to a
literal!

Lastly, we've used the double-ampersand (&&) to combine two bool values with the logical operation
AND.3 The left bool comes from our equality test and the right one comes from the ispunct result.
The rule for combining two bool values with a logical AND is:

Left Right | AND Result

true true true

true false | false

false | true false
false | false | false

Thus our overall condition will only be true when both the user did not enter a previous unit and the
upcoming input is punctuation and therefore probably a monetary symbol.

With all that in place, we can see that our input will now work for lots of inputs:

$34.95
~$34.95
34.95
34.958%

(Here the _ mark is how we show spaces in examples.)

What's that you say? The user tried to enter a space before a trailing monetary unit and the program
crashed on a later input? Oh no! | was afraid of this. We'll need a new helper: a loop!

3.2 Looping

When code needs to be repeated some number of times, we can use one of many repetition or looping
structures/statements. Our first one will be the while loop. This loop will allow us to repeat a section
of code as many times as necessary to complete the task at hand — from zero to infinity! (Okay, if the
loop runs forever, the user is bound to break out of it with the little X in the corner or a +

combo.4)

What we need here is a loop that will allow the user to enter spacing but still stop at the newline
that ends all inputs. If we used ws, it would remove all the whitespace — including the newline! (If it
removes the newline, the program will hang and wait for more input, you see. . .)

So, let's examine what ws does and try to modify that to our needs. The code for ws might very well
look something like this:

3Technically we could have used the keyword and, but we chose the && syntax because it is more prevalent in existing
code and you need to know it and recognize it. But knowing both forms is not bad for you, either.
4That's how you stop a program running amok in the terminal, btw. Hold the key while hitting the key.

(© Jason James @80 56 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.2. Looping

while (isspace(cin.peek()))
{

cin.ignore();

The while loop here is a little misleading since it has no visible indication that anything is being
repeated. It's flowchart looks like this:

isspace(cin.peek())

false .
cin.ignore()

Note how the last looped statement always flows back to the top to make the decision all over again.
Only when the condition turns false do we continue on with the remainder of the program.

So how do we change this loop to make it respect the newline as the end of the input instead of just
another space? Well, let's think of when we want the loop to stop. This is often a convenient place to
start as all humans tend to dwell on when things will end: "When is class over?”, "When is our next
break?", etc.

We want to stop the loop when we see either a newline or any non-space character. But the loop
condition needs to be not a 'stop’ condition but a 'keep going’ condition. Luckily these two are logical
opposites. And we can code a logical opposite with the ! operator, remember?

So, let's code this up!

while (! (cin.peek() == '\n' || !isspace(cin.peek())))
{

cin.ignore();

Wow! That's a mess. We had to put extra parentheses around our stop condition so we could take
the opposite of the whole thing at once. And we had to put a logical NOT (!) on the isspace test as
well. But what's that thing with the two vertical bars? That's the operator for logical OR. We said we
wanted either the newline or the non-space to stop us, right? So | coded it as logical OR.

The or in human language and the logical or are slightly different, however. In fact, they have separate
names. Normal spoken/written or is called exclusive or and logical OR is called inclusive or. The reason
is clear from its defining table:

Left Right | OR Result

true true true

true false | true

false | true true

false | false | false

Not only is logical or true when one or the other of its operands® is true but it is also true when both
of its operands are true! Since we don't expect this in normal language, we call our version exclusive
or — exclusively one or the other. And the logical version is called inclusive or because it includes the
possibility that both operands could be true at once.

5This is the general term for the thing being operated on by an operator. We had addends and divisors for specific math
operations, for instance. But we haven't named all of them for all the operators in existence. So we have this general term
to cover the rest.

(© Jason James @80 57 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.2. Looping

Is this a problem? No. Here, if we are a newline, we will be a space so the right side of the || will
be false. And if we are not a space, we'll definitely not be a newline, so the left side of the | | will be
false. Since the first line of the logical OR defining table can’t happen, it won't bother our loop at all.

3.2.1 DeMorgan’s Laws

But the ugly ! and extra parentheses are getting on my nerves. Let's explore DeMorgan's Laws to find
a way to get rid of them. Basically what DeMorgan proposed was that if we want to logically negate a
logical AND, we need to negate both operands and change the AND to an OR. Similarly for the reverse
— negating an OR negates the operands and changes the OR to an AND:

(X && Y) == (!X |] 'Y)
P I Y) == (IX && 'Y)

To see this is correct, we can use a truth table like those used to introduce AND and OR in the first
place:

Left Right | OR Result | OR Negation | NOT Left | NOT Right | AND of NOTs
true true true false false false false

true false | true false false true false

false | true true false true false false

false | false | false true true true true

Note how the fourth and last columns are the same. This shows that DeMorgan’s law for negating
an OR is valid. The table to show the negation of AND is correct would look similar.

How do we apply this? It would look like so:

while (cin.peek() != '\n' && isspace(cin.peek()))
{

cin.ignore();

Note that | not only took the ! off the isspace to negate it, but also changed the == to its opposite:
I=. This is a shortened form, clearly, of ! and ==. There was a decision in the C language to make all
operators two characters at most, so it was smooshed.

This is very difficult to read, | understand, but it will execute more quickly than the previous coding
and that’s beneficial to our user. If it helps, an && operation with a ! involved is basically the logical
equivalent of the English word 'but’. So we could read the condition as: "we aren't looking at a newline,
but it is some kind of space”.

3.2.2 Back to the Problem

So, does this help us and if so, how? Well, we have to put it in the right place, but it will help! Let's
put it here:

double price;
char money_units{};

cin >> ws;
if (ispunct(cin.peek()))
{

cin >> money_units;

(© Jason James @80 58 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.3. More About bool

cin >> price;

while (cin.peek() != '\n' && isspace(cin.peek()))
{
cin.ignore();
}
if (money_units == '\0' && ispunct(cin.peek()))
{
cin >> money_units;
}

Since it is acting like a ws but doesn’t remove newlines, it is perfect to precede our ispunct peek
that follows the user’'s price input. After all, the user may not enter a monetary symbol at this position
(see the first three test cases above). If they didn't, there would be just the newline — possibly with
spacing before it — after the price was read. Let's check our tests again:

$34.95
~$34.95
.34.95
34.95
34.95.
34.95%
34.95.9%
_.34.95.%
~34.953%

Now we pass many more test that a typical user might enter! And we've learned so much about
looping! It's a win-win!

3.3 More About bool

We've used bool quite a bit, but there is more to learn.

3.3.1 DeMorgan’s Laws and Efficiency

Why will the DeMorgan's version of the newline-respecting loop above execute more quickly? Well, let's
examine the initial coding and test it in a case with a few different inputs coming in from the user:

Input Peeked A B C
cin.peek() == '\n' | isspace(cin.peek()) 'B Al 'B IC
$ false false true true false
\n true true false true false
= false true false false true

As you can see, to evaluate each input requires five operations. This is quite a lot if the loop has to
repeat many times. But, for the version taken through DeMorgan’s process we have:

Input Peeked A B
cin.peek() !'= '\n' | isspace(cin.peek()) | A && B
$ true false false
\n false true false
= true true true

Now the tests each take three operations! Quite the savings as the loop repeats over and over.

(© Jason James @80 59 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.3. More About bool

3.3.1.1 Implicit Optimization

In fact, it is better than that in general. The compiler has made it so that when an AND's left side
evaluates to false, the right side isn't even looked at! See the defining table above and how when the
left side is false, the answer is false automatically — the right side seems to have no effect on this.

Similarly, when an OR'’s left side evaluates to true, the right side can be skipped. In this situation
(again, see the defining table), the result is always true no matter what the right side's value is.

This built-in optimizing behavior is called short-circuiting because it cuts off the 'circuit’ of calculations
early on in the process — no need to evaluate the right side or the logic operation itself. The C++
standard requires this effect so you can depend on it from all C++ compilers. You don't have to do
anything to get it, either!

3.3.2 Generating bool Values

So far we've seen that the classification functions from cctype make bool values and the operators ==,
I=, 1, |], and && all make bool values. Are there any other ways to generate a true or false?®

There are four more operators that result in bool values. These are the inequality operators and
mimic as closely as possible in plain text the familiar math operators:

C++4 Operator | Math Operator
< <
<= <
> >
>= >

These can be used on almost any built-in data type: integers, floating-point, and characters. The
bool data type is notably missing because there is no logical ordering between true and false.”

3.3.3 Logical Opposites

To help you apply DeMorgan's Laws to these new operators more easily, I've prepared the following chart.
At first glance it might seem incomplete. But note that the rows are reversible.

Operator | Opposite
< >=
<=

The reason that < is not the opposite of >, of course, is that we'd be leaving a whole in our number
line!® The equal-to case is just as important as the less or greater cases. It must be included somewhere!

3.3.4 Equality and Floating-Point

Note that == doesn't play well with all data types. With floating-point data, the compiler is apt to
complain that such comparison is imprecise.? This is true for most situations and so the compiler is
right to admonish us. For instance, a 10 might code up inside the computer as 9.99999999999999 or as
10.0000000000001. These two are not quite equal even though they are effectively to normal precision.

To deal with this, we change the desired == test to an inequality test like <= (or change !'= to >).
The test is formed like so:

60ther than to static_cast some other type. ..

"The computer will allow these comparisons and merely converts the bools to integers with implicit typecasting called
coercion.

8|f we were comparing numbers, of course. . .

9Mine even calls it 'unsafe’!

(© Jason James @80 60 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.4. Debugging with cerr
Desired Test Coded Test
A == abs(A - B) <= le-6
A =B abs(A - B) > 1e-6

Here we take the absolute value of the difference between the two values we meant to test. This
makes sure we ignore whether the left is larger or the right was larger in the subtraction. Then, we test
if this absolute difference is below or above a certain cutoff or epsilon. Here I've used 10~°, but you can
change this depending on your application. For instance, if you are dealing with measurements from a
wooden ruler, you could easily change this cutoff to 1072 as the precision isn't that good. But if you
are dealing with a nice laser-based tool for measurement, you can change the cutoff to 107° or so. The
value 1076 is just a good go-to value if you aren't sure what kind of precision you are dealing with.

3.3.5 Equality and bool

Well, if == and '= don't work well with floating-point types, are they okay for the other types? They
work fine for integers and characters. They'll even work for bool. But it isn't natural to code them
against bool values. Let's explore that for a minute.

If you had a variable or expression that was already true or false, and then asked the computer if
they were == to the literal value true only to produce a new bool value that is equivalent to the original
— isn't that redundant? Indeed! It takes effectively three evaluations to find the answer! We could
find out in just one by listing the variable or expression alone in an if or while head (the line with the
condition is called the head of a branch or loop). Look at the following table:

Variable Value | Is It true?

true true
false false
So coding bool_var == true is the same as evaluating bool_var in the first place. (Evaluating a

variable is just finding out the variable's current value.)

What if we want to know if the variable is false? Should we code bool_var == false? Again,
look at the table:

Variable Value | Is It false?
true false

false true

Well, the answer seems to be the opposite of the original variable’s value. Couldn't we just apply the
I operation to it? That’s two evaluation instead of three — still an improvement.

The only reason to test two bool values against one another is if they are neither one literals. But
even then it is considered odd. An && will tell you they are both true, after all. And to find out they
are both false, you can && their negations (see the last line of the logical OR chart above and apply
DeMorgan's Laws).

3.4 Debugging with cerr

At this point you may be facing problems with some of your codes. Perhaps a branch you were sure
should have executed was skipped or maybe a loop didn't run enough times. Maybe the loop is running
too many times — maybe even forever!

To fix the forever problem, hit the key along with the key. This will "close out” the
errant program. This helps avoid having to close your terminal or whole IDE when a loop gets stuck.

For debugging this situation and the others mentioned, we can use the help of cerr. Remember that
cerr is just like cout except without a buffer. So everything you send to it is immediately placed on
the screen. This is very important in debugging! If you were to print debugging information with cout,

(© Jason James @80 61 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.5. More Branching

after all, it would wait for the buffer to empty before being seen. This could delay it indefinitely in a
particularly troubled situation. Without a buffer, cerr doesn’t have this issue.

So, when a branch won't execute or a loop goes too short or too long, use a cerr statement in front
of it to print the control variable(s) for that decision structure’s condition. This will let you in on the
value(s) held at that moment in the code before the condition is tested and then you will know why that
condition went off or didn't as the case may be.

The only other potential problem you might face is if a loop is running too many times. In this
situation, you may need to put a ignore on cin after the cerr you've placed in the loop to print its
control variable(s). This will pause the program on at worst the second time through the loop and every
iteration thereafter. Just remember to hit / to move on with the debug printing and the
next loop iteration.?

3.5 More Branching

Is there more to branching than the if we've seen thus far? Of course! There are several variations on
the if and we'll look at two more right now!

3.5.1 Adding an else Clause

The if is fine when you have an action to perform or skip. But what about when you have two alternative
actions to decide between? We could put two ifs back-to-back:

if (test)
{
// do something
}
if (! test)
{
// do something different
}

But this makes the test twice — and once with a negation! Along comes the else clause. An else
is an optional part to any if that leads to an alternate block of code.!! This can be done like so:

if (test)
{
// do something
}
else
{
// do something different
}

Note that you need not even list the alternative condition as it is always the opposite of the one that
got us into the if. The flowchart for this construct looks like so:

10]'m assuming a full-on streamsize-maximum kind of ignore here — not just a one character removal.
11Code inside a pair of curly braces is called a block of code.

(© Jason James @80 62 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.5. More Branching

false ‘@ true
something different| something

So what’'s an example of where this might be used? Let's say that we had a student's score on an
exam and they were having trouble telling if they had passed or not. We'll print that message. There
are two alternatives: pass or fail. So we need two branches just as with an if/else. The code might
look something like this:

double score, max_possible;
cout << "Enter your score: ";
cin >> score;

n

cout << "Enter maximum points possible on the exam: ;
cin >> max_possible;

score = score / max_possible;

if (score >= .7)

{

cout << "\nCongratulations! You've passed!\n";
}
else
{

cout << "\nI'm so sorry... You've failed.\n";
¥

Here we've got the test of whether they've passed paired with a congratulatory message and the
alternative branch with an apologetic failure message.

Note on terminology: both the if and the else are called branches. But the entire thing taken as a
whole is called a branching structure which many shorten to just 'branch’ in practice. This is a common
cause of concern and/or confusion amongst new programmers. Don't be scared off! Do some branching
today!

3.5.2 Multiple Alternatives

What if the student above wanted a more fine-grained idea of their performance on the exam? Then we
have five typical alternatives instead of two! How can we handle this!

One way would be nesting. Nesting is putting one thing inside each other like those Russian dolls
that are so entertaining. Here, we'll put an if/else inside the else of another one. Let's start small
with just three branches:

if (testl)
{

// do A
}
else

{
if (test2)

(© Jason James @80 63 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.5. More Branching
{
// do B
}
else
{
// do C
¥
¥

This works fine. When test1 fails (evaluates false), we enter its else branch and evaluate test2.
This will choose, then, either branch B or branch C. And if test1 succeeds (evaluates to true), we enter
its own branch and execute whatever A entails. Thus only one of A, B, or C will execute at any one pass
through this branching structure.

But it is rather bulky, isn't it? Let's pare it down, shall we?

Noticing that the only thing inside the outer else is the inner if/else structure — no lines fore or
aft of it — we find that we can remove the 'excess’ curly braces due to the above-mentioned rule on
required bracing. This leaves only whitespace between the outer else and the inner if and lots of now
seemingly excessive indention on the inner branching structure as a whole:

if (testl)
{

// do A
}

else

if (test2)

{

// do B
}
else
{

// do C
}

Cutting down on the excess space, we arrive at:

if (testl)

{

// do A
}
else if (test2)
{

// do B
}
else
{

// do C
+

This variation is called an else-if structure by many. It is also known by the archaic name of

(© Jason James @80 64 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.6. More Looping

cascading or cascaded if.'? So, how do we use this beast to tame the grade problem? It would look
like this (assuming we'd already read and processed the user’s score as before):

if (score >= .9)
{
cout << "\nYou've got an A!\n";
}
else if (score >= .8)
{
cout << "\nYou've earned a B.\n";
}
else if (score >= .7)
{
cout << "\nYou've earned a C.\n";
}
else if (score >= .6)
{
cout << "\nYou've gotten a D.\n";
}
else
{
cout << "\nYou've gotten an F.\n";
}

Here we've got five branches — one for each grade letter. Only one branch can execute on any single
pass through this code. The conditions are mutually exclusive and only one can be true after the prior
ones have failed.

3.6 More Looping

There's no denying the while loop is excellent. And we'll explore more applications of it soon. But there
are other looping structures and we want to study one more of those as well as what not to do as we go
forward in this vein in this section.

3.6.1 Applications for while Loops

Let's look at a few applications suited to while loops.

3.6.1.1 The Yes/No Loop

The idea of the yes/no loop is quite simple: repeat a task until the user wishes to quit. Let's say you
wanted to take the time-of-day calculating program and make it repeat as long as the user desired.

It might look something like this:

#include <iostream>
#include <ctime>
#include <limits>

using namespace std;

constexpr streamsize INF_FLAG{numeric_limits<streamsize>::max()};

12My teacher tried to tell me it looked like a waterfall. | couldn’t find it, but the name sticks in my head now. *shrug*

(© Jason James @80 65 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.6. More Looping
constexpr short sec_per_min = 60,
min_per_hour = 60,
sec_per_hour = sec_per_min * min_per_hour,
hrs_per_day = 24;
constexpr long sec_per_day = static_cast<long>(sec_per_hour)
* hrs_per_day;
int main()
{
char yes_no;
cout.fill('0"'); // set filler to 0O digits
cout << "\n\t\tWelcome to the Time-of-Day Program!\n\n";
cout << "Would you like to know the current time? ";
cin >> yes_no;
cin.ignore (INF_FLAG, '\n');
while (toupper(yes_no) != 'N')
{
long sec_today = time(nullptr) 7, sec_per_day;
short hour = static_cast<short>(sec_today / sec_per_hour),
sec_not_hour = static_cast<short>(sec_today ’ sec_per_hour),
min = sec_not_hour / sec_per_min,
sec = sec_not_hour J, sec_per_min;
cout << "The time is now " << hour << ':';
cout.width(2);
cout << min << ':';
cout.width(2);
cout << sec << ".\n";
cout << "Would you like to check the time again? ";
cin >> yes_no;
cin.ignore (INF_FLAG, '\n');
}
cout << "\nThank you for telling time with the TDP today'\n"
"\nCome again!\n";
return O;
}

All of this is stuff we know, but we've put it together in a new way, so let's discuss it some.

I've moved the time constants outside the main along with the input constant for ignore's infinity
flag. I've also added welcome and goodbye messages to the program. These reside outside the yes/no
loop as they should not be repeated. Just because the entire program should be repeated, doesn’'t mean
every linel The return 0 would be especially detrimental to the idea of a loop, for instance. It would
stop the loop and the program as a whole!

But what of the loop itself? We prompt with a question of whether they want to do our task at
all. Then we read a char and throw out the rest of the input line — just in case they entered a word

(© Jason James @80 66 of 361

Chapter 3. Decision Making

Exploring C++: The Adventure Begins

Programming Basics

3.6. More Looping

instead of just y or n. Some people balk at my variable name: yes_no. They say, "Which is it? Don’t
you know?" Of course | don't! Not when I'm coding the program. | know it should be one or the other,
but | don’t know which it truly is!

Then we test the user's input in the while head. We use toupper to fold its case into just uppercase
for our testing ease. If we hadn't, we'd have to test that it was lower or upper N to stop the program.

It would have also been another DeMorgan's exercise — and who wants that, right?

Further, I'm checking for the negative response to have not happened on purpose.

It helps to

internationalize the program. Of all the languages I've studied, the negative response — in Romanized

form — starts with an 'n’. The positive responses are all over the place, though:

Language | Negative Response | Positive Response
English no yes
French non oui/si
German nein/nix ja
Russian nyet da
Spanish nada Si

So checking for just the N case let's many people answer our question even if their brain slips into
another language. (It happens when you are studying languages a lot.)

The skeleton, for your convenience, looks like this for a typical application:

{

#include <iostream>
#include <limits>

using namespace std;
constexpr streamsize INF_FLAG{numeric_limits<streamsize>::max()};

int main()

char yes_no;

cout << "\n\t\tWelcome to the

Program!\n\n";

cout << "Would you like to o
cin >> yes_no;
cin.ignore (INF_FLAG, '\n');

while (toupper(yes_no) != 'N')
{
// stuff to repeat
cout << "Would you like to ______ again? "
cin >> yes_no;
cin.ignore (INF_FLAG, '\n');
}
cout << "\nThank you for ______ with the __P today!\n"
"\nCome again!\n";
return O;

Remember to keep the welcome and goodbye messages outside the loop. Also make sure the initial-

(© Jason James @80

67 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.6. More Looping

ization and update questions have the same sense. That is, a positive answer means the same thing —
to keep going — on both questions.

3.6.1.2 Checking for Input Failure

Returning to a topic we talked about ages ago,!® we'll tackle what happens when a user types something
not numeric at a numeric prompt. That is, we ask for a number and they enter a letter or symbol or the
like.

As we said before, this sets cin into a fail state. It won't do any more work for the rest of the
program. Well, it won't do anything but a handful of functions. And it is exactly these functions can
help us get it back to work! The first is the fail function. This function takes no parameters and
reports with a bool that cin is currently in a failed state or not. We could use it like so:

short deer_in_park;

cout << "How many deer are in the park today?” ";
cin >> deer_in_park;

if (cin.fail())

{

// do something! cin is not working!

Now we need a function to fix cin and make it work again. This function is called clear. It also
takes no parameters. But it doesn't have a result to store or use, either. We call it like this:

short deer_in_park;
cout << "How many deer are in the park today?” ";
cin >> deer_in_park;
if (cin.fail())
{
cin.clear();
// but input is still corrupt!

As indicated by the comment, however, a new attempt to read the variable deer_in_park would be
thwarted by the exact same problem input the user had put the first time! The clear just makes cin
forget there was a problem. It leaves the offending char in the buffer to be read again if that's what we
wanted. Instead, we need to remove it so we can let the user enter the right thing. We'll use ignore
for this:

short deer_in_park;
cout << "How many deer are in the park today? ";
cin >> deer_in_park;
if (cin.fail())
{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << "\nThat was not a number, please read more carefully!\n\n";

cout << "How many deer are in the park today? 2

130r should it be pages ago? Either way. ..

(© Jason James @80 68 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.6. More Looping

cin >> deer_in_park;

Here I've used the streamsize-max version of ignore to make sure they didn’t enter more than a
single invalid char. This is pessimistic, of course, but what's a little extra cleaning up between friends,
right?

| do have one problem with the code as is, however. It only gives the user one second chance to get
the information to us correctly. We should change this to a while loop to allow them many chances to
fix their issue.

short deer_in_park;

cout << "How many deer are in the park today? ";
cin >> deer_in_park;

while (cin.fail())

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << "\nThat was not a number, please read more carefully!\n\n";
cout << "How many deer are in the park today? ";
cin >> deer_in_park;
}

Much better!

BTW, this loop is an excellent example of a particular kind of loop: the priming loop. The name
comes from any number of physical processes which require the same basic action to get started as they
require to keep going. For instance, when you need to pump water from a well, you have to have some
water to wet the mechanism and form a seal before it will actually draw water up from the well. A classic
engine needs a little fuel in it so it can fire off and draw more fuel from the tank. And, in olden times,
we used to have to put down some rough paint to cover up the old color and make the nice paint adhere
better to the wall before we could apply the nice paint. All of these actions are/were called priming the
task and the verb "to prime” is/was used in general around them.

Since our fail protection loop uses the input of a numeric variable to both get going and continue
around, it is also a priming loop.

3.6.1.3 Input Validation

So now that we can read numbers, how do we know that they are good for our purposes? That is, what
if our formulas or application have to be over a certain domain?'* We again turn to the while loop as
we just did for fail detection and clearance. This time, though, we will simply focus on domain issues:

short deer_in_park;
cout << "How many deer are in the park today? ";
cin >> deer_in_park;
while (deer_in_park < 0)
{
cerr << "\nThat was not a valid number, please count more carefully!\n\n";
cout << "How many deer are in the park today? ";

14Remember that in mathematics, the domain is the set of values that a function is valid over. Usually this is given as
one or more intervals on the number line — a subset of the real numbers, for instance.

(© Jason James @80 69 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.6. More Looping

cin >> deer_in_park;

Here we trap them in the loop until they enter a non-negative value for the deer population. Zero is
considered valid by design.

The while condition is the opposite of what we want to keep and this is tricky for many beginning
programmers. They want to code the acceptance condition, but that would keep users in the loop when
they got it right!

3.6.1.3.1 Input Validation with Failure Detection

What if we needed to make sure that a valid value was really a number — all at once? Then our friend
| | comes to the rescue!

short deer_in_park;

cout << "How many deer are in the park today?” ";
cin >> deer_in_park;
while (cin.fail() || deer_in_park < O)

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << "\nThat was not a valid number, please be more careful!\n\n";
cout << "How many deer are in the park today? ";
cin >> deer_in_park;
}

Please notice the subtle differences in the error messages of the last three examples. Due to the
changing conditions that each reports, | felt it necessary to reword the message to more accurately reflect
what the problem was and how the user should respond. Always take care to have a clear and thoughtful
interface with the user.

3.6.2 The for Loop

The while loop has proven itself a valiant helper in decision making during a program — a powerful tool
for repetition. However, in some situations, we can use a more appropriate loop. There are three more
loop constructs in C4++. Let's explore one of them now.

The for loop is used when we know ahead of time the number of times to repeat a block of code.
This number of times may be literal or just be able to be calculated ahead of time. It might even still be
at the whim of the user to some extent.

Before we explore this a bit, let's look at the structure and flowchart
of a typical for loop. Here they are: 1

for (initialization; condition; update)

{
body — w
¥ true

The flowchart below should look familiar. It is a slightly enhanced false
version of the one for a while loop! The flow of a for loop is exactly

the same. What's changed is actually as simple as collecting all the
loop support parts into the head of the loop together. Support parts?

(© Jason James @80 70 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.6. More Looping

Yes — the parts that control the repetition: initialization, condition,
and update.

Let's break it down. The so-called body of any loop is the sequence of tasks that need to be repeated
— the guts and soul of the loop, really — its very reason to be! The other three listed parts are just the
supporting cast to this effort. The initialization initializes or sets up the variable(s) used in the loop to
make sure they are ready for a test. The condition tests the involved variable(s) to make sure it is time
to repeat the body action(s). And the update changes the loop variable(s) to make sure the condition
doesn’t keep repeating the loop forever.

All loops have these four parts, by the way, the for loop just makes them more explicit by placing
the three control parts in the head of the loop.

Maybe seeing it in action will help. Look at this loop, for example:

short deer_in_park;

cout << "How many deer are in the park today?” ";

El

cin >> deer_in_park; // initialization
while (cin.fail()) // condition
{

cin.clear();

cin.ignore(numeric_limits<streamsize>::max(), '\n');

cerr << "\nThat was not a number, please read more carefully!\n\n";
cout << "How many deer are in the park today?” ";

cin >> deer_in_park; // update

In the above loop example, I've labeled the support parts with comments. The body is everything else
inside the loop. The declaration of the input variable and the initial cout are incidental to the process.

The loop variable here is cin. When it inputs the deer_in_park, it has a chance to fail. When
it does, we must clear and ignore and like to print a message about it to the user. These are the
body. Then we read from cin again to give the user another chance. We loop back around and repeat
if necessary.

3.6.2.1 Summation-Style Loops

Another simple loop style is best done with a for loop. That's the summation-style loop. These reflect
the process of a finite summation from mathematics:

Here, i advances through the n+ 1 values 0, 1, 2, ... n and a value from the sequence define by the
x;s Is added to a running total. It serves the same purpose as:
X+Xx1+XxXo+ -+ X,

It just saves on space and — once you're used to it — cognitive bandwidth. We can perform this
action in a simple for loop:

1 cout << "Please enter your six values: ";
2 short n = 5;
3 double sum = 0.0, x;

(© Jason James @80 71 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.6. More Looping

4 for (short 1 =0; i <=n; i =1+ 1)

5 1

6 cin >> Xx;

7 sum = sum + X;
s F

9 cout << "\nYour sum is " << sum << ".\n";

Here, we ask the user to enter the sequence of values to be added and read one per loop repetition.
The support code makes sure the loop runs exactly six times. We can find this out by taking the value
of n (5) and subtracting the starting value of i (0) and adding 1: 5—0+ 1 = 6. Why is this? Let's
follow along in a couple of different ways to see if one strikes your fancy.

First let's follow x, sum, and i on their journey:

X sum | 1 | Line Number
- 0.0 | = 3
- 00 |0 4a
- 00 |0 4b
20100 |0 6
20120 1|0 7
20120 |1 4c
20120 |1 4b
1.0 20 |1 6
1.0 30 |1 7
1.0 3.0 |2 4c

The a, b, and c on the fourth line labels are indicating the initialization, condition, and update
respectively. This trace tells us that the i variable is initialized (4a) once and then the repetition begins
by testing this value (4b). When it is true that i is less than or equal to n, we enter the loop body.
Here we gather a new x value at line 6 (I've used 2 for the first value rather arbitrarily) and add it to
the sum at line 7. After that 1 is added to i in the update (4c) and we return to the condition to see if
another loop is appropriate.

Note that we are using a lot of vertical space with this tracking. And we still aren’t done! We usually
compact it to reflect each repetition of the loop together like this:

b'd sum | i
- 0.0|O0
2.0 20| 1
1.0 30| 2
4.0 70| 3
3.0| 10.0 | 4
2011205
3.0 150 | 6

This is a little harder to read, but tells us what we need to know about the number of repetitions.
As you can see, i takes on the values O through 6 and when it becomes 6, the condition stops us going
around again. This makes six times the x and sum variables got changed by the body.

But why is it plus one? Oh, right, well we can look at this a few ways from a mathematical standpoint
also. The number of repetitions is equal to the number of values i takes on while the loop condition is
true. This was when it was 0, 1, 2, 3, 4, and 5. Counting we immediately see this is also 6 items and
so the problem turns into one of counting how many values are in an integer range.

So how many values are in the integer range [a..b]?'® There are a, a+1,a+2, ..., b—1, and b.

15Here the .. indicates an integer or discrete interval rather than a continuous one you might have used when solving
inequalities in algebra. Those use commas to separate the end-points.

(© Jason James @80 72 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.6. More Looping

This is harder to see. An attempt to compute it is, of course, b — a. But this turns out to be short by
one. (Note our [0..5] example above.)

It is short because we've removed a entirely by the subtraction. We must therefore add it back in
with the +1. (If we added a again, we'd just be back at b as it would add in not just a but all those
integers that came before it down to 0!) This is akin to the pages problem. If the teacher tells you to
read pages 95-100 tonight, you immediately think it is 5 pages. But you actually need to read page 95,
too so it is really 6 pages. You have to add 1 to get the 95 — and only the 95 — back into the count.

So, in general there would be b — a + 1 iterations of a loop initialized to start at a and set to end
when the loop control exceeded b. But is that general enough?

3.6.2.1.1 Generalizing to the Max

So what about a loop like this one:

for (short 1 =b; i <=e; i =1+ s)
{
// do stuff

.) e—b+1]| .) .
This loop will run [fw times. Don't forget the notational symbols for the ceil function we

learned earlier in section 2.6.2.3.

But a loop condition doesn't have to be "or equal to”, of course, it can be strict as well. Does this
. . e—b
change things? Yes, but only a little: [T}

And a loop doesn't have to go up, either. After all, if we can add, couldn’t we subtract? Sure! How
does this change the original formula? Well, if the down-loop was like this:

for (short 1 =b; i > e; i =1 - s)
{
// do stuff

. . b—e+1 : :
We would get a formula like this: [%w And a strict comparison would take out the +1 as before.

Wow! This gets pretty complicated, eh? Not really. We can merge these four formulas into a single
one if we adjust our thinking slightly. Let’s use this formulation for the loop:

for (short i =b; i Ce; i =1 + 8)
{
// do stuff

And let’s keep in mind that s can be positive or negative — but not zero or we'd have an infinite
loop! Also, note the placeholder C for the comparison. Let's make a helper variable o set to either 1 or
0 depending on if C is inclusive or strict respectively. Now there need be only one formula:

e

This covers all additive or subtractive loop situations. (We didn't mention the multiplicative ones,
but that's a story for another time. . .)

(© Jason James @80 73 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.6. More Looping

3.6.2.2 Where'd My Variable Go?

Some of you might explore afield, of course, and find that the variable from our for loop disappears
after the loop is done. It is only available inside the loop and in its head.'® We could have kept using
the variable had we declared it before the loop:

s ~

short 1i;
for (i=b; i<=e; 1i=1i+s8)
{
// do stuff
}

// can still use i

\.

But this isn’t the norm. Most programmers in this modern era will declare the control variable in the
for loop head.

Note well, this cannot be done for a while loop! This feature of declaring the control variable in the
head of the loop is only for for loops.

3.6.2.3 But That Update Was Icky

The update of i = i + 1 was a little bulky for that space, don't you think? Well, you aren’t alone!
Also, it turns out that we update control variables by 1 a LOT. So, they made some extra operators that
shorten that update area quite a bit. They are collectively known as shorthand operators. There are 8
of them we might find useful in the near future. They are:

Original Code | Shorthand
v=v+1 v += 1
v=v-1 v =1
v=v k1 v k= 1
v=v/1 v /=1
v=v1 v %=1
v=v-+1 v+
v=v-+1 ++v
v=v-1 v--
v=v -1 =V

The first five are known as compound assignment operators and the last four are the increment and
decrement operators.

There is one more thing about two of those last four, though. I've technically lied to say they are
just the same as original code. The two I'm talking about are the ones with ++ and -- after the variable
name. And if they are by themselves on a statement or in the update area of a for loop, they are
identical to that original code. But if you mix them with other code (an odd thing to do, but it happens
sometimes), they have a slightly different meaning.

You see, all of the operators — even assignments — result in something that can be used further
if need be. For instance, we can use the result of a multiply in a following addition: a + b * c. And
we can further use the result of that addition in an assignment: d = a + b * c. And this goes for all
operators in CH+-+.

What of assignment's result? Isn’t that the end of that statement? Not necessarily. We can end an
assignment with a semi-colon, but we can also follow it up with another assignment: a = b = ¢ = 0.
In this expression we've assigned c to be 0, b to take on c’'s value, and a to take on b's value.!” This

16\We call the top line of a decision structure its head because the block below it is called the body. Anatomy 101, right?
7 There's actually a little more to it than even that, but we'll discuss that another time.

(© Jason James @80 74 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.7. Nesting

form of multi-assignment is often done to initialize multiple variables to the same value at once to save
typing.

So what does this have to do with v++ and v—-7 Well, instead of just updating the variable to be
one more or less, they also have a result. The result of the prefix counterparts (++v and --v) is the
new value of v. But for the postfix versions the value is the old value of the variable! This can cause
trouble if it is not well understood. Make sure to comment on such use if you do it or even just see it
uncommented in code in the wild.

Anyway, the above loop could have been coded as either:

for (short i = 0; i <= n; i++)
{
cin >> x;
sum = sum + X;
}
or:
for (short i = 0; i <= n; ++i)
{
cin >> x;
sum = sum + X;
}

Seen in context, you may now realize why C++ has the name it does: it is incrementally better than its
ancestor language C. *chuckle*

3.7 Nesting

Some flow situations call for more than a simple branch or loop. Sometimes we have to, for instance,
branch within a loop or vice-versa. These situations, where one decision structure is placed inside another,
are called nesting. This can lead to very interesting flow control and is well worth its own section of
investigation!

3.7.1 What Can Go in What

It turns out this query is quite simple: anything can go in anything! You can put a branch inside another
branch, a loop inside another loop, branches inside loops, or loops inside branches.

And the nesting isn't limited to one layer, either. You can nest as many levels deep as is necessary
to capture the logic of the problem at hand.

3.7.2 Examples

Let's explore some examples of this concept to get a better feel for its complexity and utility.

3.7.2.1 Menus

A menu is a great example that shows off nesting a branch inside a loop. The branch is fairly obvious:
decide what option the user chose from the menu and do something accordingly. But what loop is there?
Well, consider a menu in your favorite program. After you choose something from the menu — File,
perhaps — does the menu itself disappear or is it still visible at the top of the screen? It's still there!
That means we need to loop around and display the menu again so the user has another chance to
choose an option. This should continue until they choose to quit the program. Here's a sample menu:

(© Jason James @80 75 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7. Nesting
char choice;
bool done;
done = false;
while (! done)
{
cout << "\t\tMain Menu\n\n"
"1) do Junk\n"
"2) do Stuff\n"
"3) Quit\n\n"
"Choice: ";
cin >> choice;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
choice = static_cast<char>(toupper(choice));
if (choice == '"1' || choice == 'J')
{
cout << "\nOption 1 -- JUNK -- Chosen!\n\n";
}
else if (choice == '2' || choice == 'S')
{
cout << "\nOption 2 -- STUFF -- Chosen!\n\n";
}
else if (choice == '3' || choice == 'Q' || choice == 'X')
{
done = true;
}
else
{
cout << "\n\aInvalid choice '" << choice << "'!!I\n\n"
"Please try to read more carefully next time...\n\n";
}
}

We see several standard features here. First of all, there is a bool variable to control the loop. This
simplifies our thinking process to not think about what the user has to choose from the menu in order
to quit. When they choose to quit and the proper branch is executed, we will change the value of the
bool variable to stop the loop on its next test of the condition.

The next thing to notice is that we use a char variable to read the user’'s choice from the menu.
This allows the user to enter either the number of the menu item or its significant letter. We try to
design a menu with a unique significant letter in each item. This allows those who don't identify well with
numbers to remember mnemonically which item they want. We've even included an ignore to make it
so the user can type the significant word instead of just the letter if they are so disposed.

This also mimics the way the user can choose an application action multiple ways in a graphical
interface — also known as an event-driven application. There, the user may choose via the menu in any

of several ways or by using a key-combination sequence like + to save a file.

Be careful when designing your menus to not only make the significant letters be unique within the
menu, but also to limit the menu to 9 choices. This will let you number them with just the digits 1-9
which can all be represented as char. If you try to make a tenth item, it would either have to be two
digits long — no longer a char — or it would have to be represented by 0. Normal people don't do well
with items numbered 0. . .

Then, to make our tests easier in the if, we force to uppercase all inputs. This won't affect the

(© Jason James @80 76 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7.

number choices but will make it so we don’'t have to test both the upper and lower case forms of the
significant letters.

Next we have our if branches to test which item was chosen. We have many == tests and we've
used | | to combine them so that more than one input can lead to each option’s code.

We note along the way that there is an extra || on the quit option branch. This is a standard
alternative quit mnemonic for exit. It was included to make our program easier for users moving back
and forth between different applications all day.

Finally, we see an else branch. It's purpose is to catch any user inputs we didn't foresee. This
would mean the user had selected something invalid for our menu. This doesn’t happen in graphical user
interfaces, but can easily in a console-based menu.

3.7.2.1.1 Asynchronous vs. Synchronous

As they are initially, menus are asynchronous in nature. That is, the user can choose any option at any
time and doesn’t have to choose them in any specified order.

Some situations, however, call for synchronic-

ity. We need to have a selection, for instance,
before we can copy or cut it. Normally such un-
available options (copy/cut before the selection is
made) are grayed out in the menu of a graphical
interface. We can't quite do that, but we can print
an indicative message to the user that lets them
know that an option is currently unavailable and

The Tool

bool is ideal for this situation because it can
remember that something has or has not hap-
pened in its true/false nature. In fact, any
time you need to remember later in a code
that something happened earlier, think bool!

make it so that if they choose it anyway, nothing
but a message happens.

To enforce such prerequisites, we can use a helper bool — one in addition to the one controlling our
loop. We'll set it to allow only the first in the sequence of actions to run at first. Then, once that option
has been chosen, we'll change its value to allow the user to choose the second action in the sequence.
Let's look:

char choice;
bool done, junk_done;

junk_done = false;
done = false;
while (! done)
{
cout << "\t\tMain Menu\n\n"
"1) do Junk\n"

"2) do Stuff";
if (! junk_done)
{
cout << " [not currently available]";
¥

cout << "\n"

"3) Quit\n\n"

"Choice: ";
cin >> choice;
cin.ignore(numeric_limits<streamsize>::max(), '\n');

choice = static_cast<char>(toupper(choice));

(© Jason James @80 77 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7. Nesting
if (choice == '1' || choice == 'J')
{
cout << "\nOption 1 -- JUNK -- Chosen!\n\n";
junk_done = true;
}
else if (choice == '2' || choice == 'S')
{
if (! junk_done)
{
cout << "\nPlease choose option 1 (junk) first...\n\n";
}
else
{
cout << "\nOption 2 -- STUFF -- Chosen!\n\n";
//junk_done = false;
+
}
else if (choice == '3' || choice == 'Q' || choice == 'X')
{
done = true;
}
else
{
cout << "\n\aInvalid choice '" << choice << "'!!I\n\n"
"Please try to read more carefully next time...\n\n";
}
}

We see now that the new bool junk_done is set to false initially because the user hasn't chosen
the Junk option yet. Then, when the Junk option is chosen, we change junk_done to true to record
that happening.

We also see that the menu is broken in pieces by a new if. This branch prints a message when the
Junk branch has not been done. The message appears on the screen just after the 2) Stuff option. It
says that this option is currently unavailable — our version of graying it out.

If we play out two scenarios for the Stuff option, we see how this all comes to a head. First, let's
assume that the user chooses Stuff right away. junk_done will still be false and the if inside the Stuff
branch will fire (execute) because !false is true. This will print our message that the user must choose
Junk first and leave the branch to return to the top of the while loop.

Coming back in, let's say the user now chooses Junk. This changes junk_done to true. Next
the user chooses Stuff a second time. This time, junk_done is true so !true is false and the else
executes. So this time we actually perform the Stuff code!

What's the commented-out change of junk_done in the Stuff branch’s else branch? That is in case
you want two options to toggle off one another. Such that, once done, Stuff can’t be done again until
the user returns and does more Junk.

3.7.2.1.2 Sub-Menus

What about when you select one menu and it pops out another menu? Oh, sub-menus? We can do that
in the console, too!

All we need do is place a whole loop/branch combo for a sub-menu into the branch for a regular
menu item. This is bulky, but it works just fine. (In a little while we'll learn how to fix the bulk issue.)

(© Jason James @80 78 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7. Nesting

What does it look like? It can look something like this:

char choice, sub_choice;
bool done, leaving;
done = false;
while (! done)
{
cout << "\t\tMain Menu\n\n"
"1) do Junk\n"
"2) do Stuff\n"
"3) Quit\n\n"
"Choice: ";
cin >> choice;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
choice = static_cast<char>(toupper(choice));
if (choice == '"1' || choice == 'J')
{
cout << "\nOption 1 -- JUNK -- Chosen!\n\n";
}
else if (choice == '2' || choice == 'S')
{
leaving = false;
while (! leaving)
{
cout << "\t\tStuff Menu\n\n"
"1) do Dude\n"
"2) do Sweet\n"
"3) Return to Main Menu\n\n"
"Choice: ";
cin >> sub_choice;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
sub_choice = static_cast<char>(toupper (sub_choice));
if (sub_choice == '1' || sub_choice == 'D')
{
cout << "\nOption 1 -- DUDE -- Chosen!\n\n";
}
else if (choice == '2' || choice == 'S')
{
cout << "\nOption 2 -- SWEET -- Chosen!\n\n";
+
else if (choice == '3' || choice == 'R' || choice == 'M')
{
leaving = true;
}
else
{
cout << "\n\aInvalid choice '" << sub_choice << "'!'l'!I\n\n"
"Please try to read more carefully next time...\n\n";
+
+
}

(© Jason James @80 79 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7. Nesting

else if (choice == '3' || choice == 'Q' || choice == 'X')
{

done = true;
}
else
{

cout << "\n\aInvalid choice '" << choice << "'!'l'I\n\n"

"Please try to read more carefully next time...\n\n";

}

This sub-menu will repeat in place until the user chooses to return to the main menu. If you'd prefer
the sub-menu to let the user have one shot and then return them immediately to the main menu, just
take the while loop off. The only consequence is that the return branch of the menu’s if structure will
be empty and that's a bit odd and off-putting to a programmer. But we'll live. If you prefer, you could
change its condition with DeMorgan's Laws and cut straight to the invalid message. That would keep
you from having an empty branch and would give you practice at a much-used skill. *smile*

3.7.2.1.3 Options Menus

A special kind of sub-menu is one for setting up configuration options. Yeah, sometimes it is good to
allow the user to tweak certain aspects of the program during the run. This ability to tweak an aspect is
called configuration of the aspect. We use menu options to let the user choose which aspect to configure,
so we call them configuration options.

Let's assume for a minute that the program has an integer option like the length of an output line or
something. This integer will actually be a streamsize, of course, as it represents number of characters to
display on an output stream — the size of that stream output. How might this look in the configuration
sub-menu? We could do it like this:

Configuration Menu
1) set Line Length
2) Return to Main Menu

Choice:

And when they choose the Line option, we read in their chosen length and move on with the program.

Or, we could make it a little more friendly and report the current setting:

Configuration Menu
1) set Line Length [75]
2) Return to Main Menu

Choice:

This let's them know if they need to change it or not at a glance. But what if they accidentally select
1 instead of 2 anyway? Let's make sure we keep the input buffer clean with proper use of ignore and
its parameter streamsize's max. Then, when we go to read the line length, we can code it like so:

cout << "\nPlease enter new line length or <Enter> to accept "
<< line_length << ": ";
cout.flush();

(© Jason James @80 80 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7. Nesting
if (cin.peek() != '\n')
{

cin >> line_length;
b

cin.ignore(numeric_limits<streamsize>::max(), '\n');

Recall that f1lush is a function for forcing cout to display right away. Recall also that peek doesn't
cause cout to display a waiting prompt like most input does. Thus we need this to check for a newline at
the beginning of the input. (If we'd used ws it would have thrown out the newline and hung the program
waiting for more whitespace!)

Alternatively we could use the manipulator form for the flush function:

cout << "\nPlease enter new line length or <Enter> to accept "

<< line_length << ": " << flush;
if (cin.peek() != '\n')
{

cin >> line_length;
}

cin.ignore(numeric_limits<streamsize>::max(), '\n');

This manipulator is found conveniently in iostream with cout itself — no extra library required.

3.7.2.2 Validation Revisited

Before, we were rather pessimistic in our reaction to bad data by ignoring the entire input line instead
of just the single char that caused the read to fail. We also didn't explore putting input validation
together with domain checking. Let's tackle those things now.

3.7.2.2.1 Combining Validation and Domain Checking
This turns out to not be that hard, but it requires nesting.

We could take a rather extreme approach and use our validation loop for every cin of our domain
loop:

short deer_in_park;

cout << "How many deer are in the park today? ";
cin >> deer_in_park;

while (cin.fail())

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << "\nThat was not a number, please read more carefully!\n\n";
cout << "How many deer are in the park today? ";
cin >> deer_in_park;
}
while (deer_in_park < 0)
{

cerr << "\nThat was not a valid number, please count more "
"carefully!\n\n";
cout << "How many deer are in the park today? ";

(© Jason James @80 81 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7. Nesting

cin >> deer_in_park;

while (cin.fail())

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << "\nThat was not a number, please read more carefully!\n\n";
cout << "How many deer are in the park today? ";
cin >> deer_in_park;

}

}

Although this will work, it isn't very pretty. Kinda bulky, in fact. Another approach is to nest an if
inside a while loop with a modified condition:

short deer_in_park;
cout << "How many deer are in the park today? ";
cin >> deer_in_park;
while (cin.fail() || deer_in_park < 0)
{
if (cin.fail())
{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << "\nThat was not a number, please read more "
"carefully!\n\n";
}
else
{
cerr << "\nThat was not a valid number, please count more "
"carefully!\n\n";
}
cout << "How many deer are in the park today?” ";
cin >> deer_in_park;
}

You can see that we used | | to combine the conditions from the previous loops and so either of them
will keep the user trapped in this loop. The other trick is that we've used a nested if to print just the
right error message — and take any other necessary actions — for the issue that got us to keep going.
This all gets the job done with much less code and is considered more elegant.

The only thing to take particular note of here is that we test for cin failing before we test the domain
of the value. This is important to not waste time asking about the domain when the value isn't even a
value yet! This kind of easy optimization should be done even at this early point in your programming
career. Always think about the repercussions of your code on the user’s day.

3.7.2.2.2 Really Nice fail Checking

But we are still assuming the whole line was useless if a single char causes failure on a number. Let's
make our validation loop more friendly:

short number;
cout << "Enter value: ";

(© Jason James @80 82 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7. Nesting
cin >> number;
while (cin.fail())
{
cin.clear();
if (cin.peek() !'= '\n') // doesn't seem possible,
{ // but see else below
// x\n
/] x \n
cin.ignore();
while (cin.peek() '= '\n' &&
isspace(cin.peek()))
{
cin.ignore();
}
if (cin.peek() == '\n')
{
cout << "\nInvalid numeric format!!!\a\n"
"\nTry again: ";
}
// x 9...\n (clears but no message —- yet)
}
else // numeric input is 'consumed' even if it
{ // could not be stored
cout << "\nNumber magnitude too large!!!\a\n"
"\nTry again: ";
}
cin >> number;
}
cin.ignore(numeric_limits<streamsize>::max(), '\n');

Here we start by clearing the failure so we can find out what char caused the problem. Strangely, if
it was a number but just couldn’t fit in our variable, the input is removed from the buffer, but the newline
from the user’s / is still left behind. Thus the peek check for a newline right off after we

clear cin.

If we don't find a newline, things are more complicated. Here we have to throw out the offending
char with a plain ignore and then look for empty space after that. Why should we look for the extra
spaces? What if the user typed some 'stuff’ and then later the number we were looking for? It could
happen! We should be careful. Since, however, there might not be a number after the spacing, we use
our while version of ws that respects the end of line mark (newline) and stops accordingly. Only if we
get to the newline after that loop do we print a message.

You should try this out and see how much friendlier it can be. Try some values like these:

32768
-32769
flower
$32

3.7.2.3 2D Printing

Another place to use nesting is printing things that are two-dimensional like an addition table. This will
involve at least a pair of nested loops — most likely for loops.

The idea here is to produce a table like so:

(© Jason James @80 83 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.7. Nesting

We'll start by printing the top two lines which don't repeat themselves:

cout << "oy |||;
for (short row = 1; row <= 4; ++row)

{
cout << setw(2) << row;
}
cout << "\n--—-+" << setfill('-') << setw(2 * 4) << "-" << '\n'

<< setfill(' ');

Here I've used setw because | had literal widths and those are plain int anyway.

Next comes the rows of the table. These involve two values running in a particular pattern:

row| col

DWW N =

The col value needs to run through all its values for each value taken on by row. To accomplish this,
we'll have to nest one for loop inside another:

for (short row = 1; row <= 4; ++row)
{
cout << setw(2) << row << " [";
for (short col = 1; col <= 4; ++col)
{
cout << setw(2) << row + col;
}
cout << '\n';
}

Now you can see that the col loop will run through all of its values before row increments to its next
value.

If we wanted to augment this to allow the user to enter the upper bound on the table size, we'd need
to account for sums of at least two digits (like 5+5), we would need to make a streamsize type value
and use cout’s width function instead of using setw. This is because the width of each sum would be
variable depending on the limit the user entered.

We could handle this in two ways. One would be a simple if that would be limited to our industri-
ousness to type in possibilities. But it would also be limited by the screen’s size, so it wouldn’t be too
horrible. The other is to learn a new tool to calculate the number of digits it takes to print a number on
screen. Doing so we could figure out algorithmically how wide to make each column in the table.

The branch approach might look like this:

(© Jason James @80 84 of 361

Exploring C++: The Adventure Begins

Nesting

Chapter 3. Decision Making Programming Basics 3.7.
if (sizet+size < 10)
{
col_width = 2;
}
else
{
col_width = 3;
}
// no need for any more due to screen size limitations

Here size can be a short and is the user-entered table bound. col_width, on the other hand, is
our streamsize variable for the width of each column. Simple enough. This would precede the for loop
that prints the top row of the table as we need it to space those column headings, too.

The new tool approach uses everyone's favorite math function: logarithms! Due to the work of
Claude Shannon in the field of information theory (which he kinda founded), we know that the number
of [base-ten] digits in a number is:

[logip x| + 1

Don't forget the notational symbols for the f1loor function we learned earlier in section 2.6.2.3. (This
calls for the floor of the logarithm to the base in which we want to represent the number, btw. If you
want to find out how many binary bits it takes to represent x, just change the logarithm base to 2.)

Trying it out to satisfy our curiosity, let's try 10: /091010 = 1 and the floor of 1 is 1. Adding 1
we get 2 and it takes 2 base-10 digits to represent 10! If we try something smaller than 10, we get a
logarithm that isn't quite 1 — a fraction between 0 and 1. The floor of this would be 0 and adding 1
would get us 1.

x:12 3 4 5 6 7 8 9 1011 12 ... 99 100 101 ...
logl0(x): 0 0. 0. 0. 0. 0. 0. 0. 0. 1 1. 1. ... 1.2 2.
floor(): 00 0 0 0 0 0 0 0 1 1 1 ...1 2 2

+:11 1 1 1 1 1 1 1 2 2 2 ...2 3 3

The only exception to this rule is 0 which takes 1 digit but whose logarithm we can't take. (And if
you ever need to find this out for a negative value, just take its absolute value before the log and add 1
more for the negative sign which takes up a little more space.)

So, in code, this would look simply like so:

// number of digits +1 for the spacer
col_width = static_cast<streamsize>(floor(loglO(size + size)) + 1) + 1;

The typecast is needed to make the double from floor fit properly into the right type to store in our
column width variable. Again, this would go right above our display of the top row of the table.

Altogether it might look like this:

short size;

streamsize col_width;

cout << "What is the bound on your addition table? ";
cin >> size;

while (cin.fail() || size <= 0 || size >80 / 3 - 2)
{

(© Jason James @80 85 of 361

EY MG TR

https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Information_theory

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics

3.7. Nesting

cout << "\nThat ";
if (cin.fail())

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << "wasn't a number";
}
else if (size <= 0)
{
cerr << "value was too small";
}
else
{
cerr << "value was too large to fit on screen";
}

cout << "!\n\nWhat is the bound on your addition table? ";
cin >> size;
}
// number of digits +1 for the spacer
col_width = static_cast<streamsize>(floor(loglO(size + size)) + 1) + 1;
cout.width(col_width+2); // +2 for the space and bar
cout << " + |5
for (short row = 1; row <= size; ++row)
{
cout.width(col_width) ;
cout << row;
}
cout << '\n';
cout.fill('-");
cout.width(col_width+2); // +2 for extra - and

cout << "-——+";
cout.width(col _width*size+l1); // +1 for an extra - at the end
COut << n_n << |\n|;

cout.fill(' ');
for (short row = 1; row <= size; ++row)
{
cout.width(col_width);
cout << row << " |";
for (short col = 1; col <= size; ++col)
{
cout.width(col_width);
cout << row + col;
}

cout << '\n';

Here I've added validation on the table size and made the bar of dashes match the size of the numeric
parts of the table. | could have just checked == 0 if | had made size unsigned short instead, but |

was feeling too lazy to type unsigned at the time. *smile*

3.7.3 What NOT To Do

Once you start learning to nest branches inside repetition structures, various forces will conspire to bring

you over to the dark side! You must not listen to them! Hold strong!

(© Jason James @80

86 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.7.

Nesting

The things they would have you do involve three C4++ commands that we inherited from our C
ancestors and persist to this day in our midst. We shun them, but still they linger in the shadows and
alleyways.

They are goto, continue, and break. These commands will take your program to new depths of
insanity! They cause control of the code to evaporate into nothingness and leave strong programmers
whimpering at their desks.

No, seriously. They do cause brain rot and should never be used. We even planned against these
constructs since the '60s when Edsger Dijkstra wrote his seminal paper " Goto Statement Considered
Harmful”.

How can we get rid of them?! Never use goto — EVER!!!

As to continue and break, it just needs a little tender-loving care.

3.7.3.1 Removing a continue

For instance, were you to have this kind of code in your program:

while (C)
{
A
if (C2)
{
continue;
}
B
}

It would normally cause the program to skip the B code when the condition C2 was true. The
program would instead jump straight to the C test at the top of the while. To avoid this non-sense,
just change the code to this:

while (C)
{
A
if (! C2)
{
B
}
}

Now the code does the same exact thing, but there is no crazy jumping around!

3.7.3.2 Removing a break

Similarly, if you find this in your code:

for (I; C; U)
{
A
if (C2)
{

break;

(© Jason James @80 87 of 361

EY MG TR

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il
}
B
}

We would, under the condition C2 being true, stop the for loop prematurely. Instead of this craziness,
we can change it up to:

I
t = false; // t is a temporary bool variable
while (C && ! t)
{
A
t = C2;
if (! t)
{
B
U
}
}

This has the same effect as the for loop with a break, but without the jumping around nonsense.

3.8 Standard Libraries II

Two of the most popular styles of programming are procedural and object-oriented programming. Proce-
dural programming style focuses on procedures (actions) involved in a process and then applies those to
data. Object-oriented programming style focuses on the data necessary to describe a process and then
looks at actions that data may be involved with.

The programming we've done so far has been core to both of these styles. But we'll now be studying
more about the overlaying styles. We'll look into OOP first in this section — but just a surface run.
Then we'll dive headlong into procedural programming in the next chapter (4). And finally we'll come
back to OOP for a deep dive in the chapter after that (5).

3.8.1 OOPs

C++ implements OOP style by allowing the programmer to define their own data types. Such types are
called classes and their definition describes both the "physical’ and 'behavioral’ aspects of the data.

C++ chose the term 'class’ for such data types to bring to mind classification systems such as
the one used in the biological sciences to classify animals into domains, kingdoms, phyla,’® etc. The
individuals described by such a class are termed the objects or instances of that classification. (You can
also use the old terms "type’ instead of class and 'variable’ instead of object if you like.)

We've already looked at two classes for our console interaction: those for input and output streams.
In particular we've looked at the individual objects cin and cout (and a little at cerr). We've come
to find that there are various syntaxes involved in using class objects that are different from typical
procedural programming syntaxes: dots were a major factor, you may recall.

Well, now we're ready to tackle a new class: the string class. This will take us to a whole new
level of OOP usage.

18That really is the plural of phylum!

(© Jason James @80 88 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

3.8.2 The string class

The string class from the string library has facilities for constructing string objects, output of
string objects, input of space-separated string values, assignment of string objects, concatenation
of strings, subscripting a string object to access a particular character, and comparing two string
objects to one another lexicographically (sort-of alphabetically). As well as utility functionality such
as determining the length/size of a string object, determining if a string object is empty or not,
inserting a new character sequence into a string object, erasing character sequences from a string
object, and replacing one character sequence within a string object with another.

In addition to these things, the string class also provides enhanced subscripting, assignment, and
input facilities, comparison facilities, and searching facilities.

3.8.2.1 Declaration (aka Construction)

Let's start at the beginning with creating a string object in the first place. We normally declare a
variable and strings are no different. We just sometimes call declaring a string constructing the
string or even defining the string instead.

The syntax can be very simple:

string s;

This declares a new string-typed object (variable) named s. It is by default empty (aka ""). This
is a little different than with our built-in types which, of course, had no value by default. But strings
know about values from the get-go and clean up their memory area to have a nice place to store your
information when it gets here.

Or we could initialize the object with a value:

string t = "Hello ";

This declares t as a string-type object and initializes it to the value "Hello " (note the space).

We can even construct constants of the string type:

constexpr string PROGRAM_TITLE = "string mangler";

And, you can initialize one string object to be an exact copy of another object:

string u = t;

In fact, this and the initialization from a literal string have another syntax that you can use, too:

string t("Hello ");
string u(t);

Some people like this syntax rather than the = syntax to remind them that initialization is not
assignment (more on that later...). But it brings to mind for me one more construction possibility —
one that requires the parentheses syntax:

constexpr string BORDER(70, '*x');

Here BORDER is constructed as a sequence of 70 stars (aka asterisks). The parentheses are required,
of course, because if we used = syntax, the definition would read:

(© Jason James @80 89 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

constexpr string BORDER = 70, 'x';

And now we are trying to initialize BORDER (a string object) with the integer 70 and then move on
to declare a second string constant whose name is '*' — highly illegal!

Of course, we can also use the curly-brace syntax of initialization for initializing string objects as
well. But for that last form, we really need parentheses. If we used curly-brace syntax like this:

[constexpr string BORDER{70, '*'};

We'd end up with a string containing an F and a star! Why? The compiler takes this to mean a
string containing the following list of chars and 70 is the ASCIl code for a capital F. (The coercion is
automatic and silent. Kinda annoying if not deadly!)

3.8.2.2 Displaying strings

Displaying strings is as easy as with the builtin types. We just need to insert it using the insertion
operator (<<):

cout << t << s << "I\n";

or to display our border between program segments on-screen, we could do:

cout << '\t' << BORDER << '\n';

As you can see, it mixes with other types of data just fine.

3.8.2.3 Assigning strings

During the run of the program, you can change one string to look like another string value with the
assignment operator — just like you've done for built-in types:

s = "new stuff";

or:

or even:

s = uu;

That last one would empty the string out like it was just now default constructed.

3.8.2.4 Inputting strings

Alternatively, you can extract the user’s information from an input stream into a string variable to give
it a value. Just use the extraction operator (>>) that we use with the builtin types:

cin >> s;

(© Jason James @80 90 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

The one thing to remember is that extraction is a whitespace hater and will not ever store spacing
into even a string! It will separate the user’s input into 'words’ at space boundaries and bring them in
one at a time into your string object(s).

3.8.2.5 Concatenating strings

You may be wondering, how do we read space-containing data like addresses into a string if extraction
stops at them and skips leading ones? Before we get into that, we need to talk concatenation.®

To attach strings one to the end of the other, we use the + operator. For instance:

s = "Jason";
cout << t + s << "I\n";

would print "Hello Jason" followed by an exclamation mark and newline. This doesn’'t harm the two
concatends!®® It merely makes the concatenated result. So this:

(- |

will compile but has no visible effect...

To store the result rather than print it, you could, of course use the assignment operator:

(= con)

(*snaps fingers* Now | lost that spare copy of "Hello " | was saving...*shrug*) And now | can still print

It:

cout << u << "I\n";

or | could use concatenation some other way(s). ..

3.8.2.6 Reading strings Containing Spaces

Let's start by reading all the words on a line and printing them back out to the user:

string word;
cout << "Enter your sentence/phrase: ";
cin >> word;

while (cin.peek() != '"\n')
{
cout << word << '\n';
cin >> word;

}
cin.ignore(); // throw out newline
cout << word << '\n'; // prints the last word -- loop stopped because

// this word was trailed by a newline. ..

19Concatenation is a fancy word for " attach one thing to the end of another’. Programmers love this word and use it
all the time. Get used to it.
20 Just kidding. That’s not a real word. But it sounds good — like addends in addition, right?

(© Jason James @80 91 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

It doesn't work perfectly. The user has to hit / right after their last word, for instance.
But it is good enough for us to work with and build from. Also note that we print as we read because
we can only store one at a time in a single variable like this.

This hurts some student's heads as they think we are printing as the user is typing. This is not the

case. We are printing as we are reading and our reading doesn’t start until the user has hit /
and are done typing.

string word, line;

cout << "Enter your sentence/phrase: ";
cin >> word;
line = "";
while (cin.peek() !'= '\n')
{
line += word + ' ';
cin >> word;

+
cin.ignore(); // throw out newline
line = line + word + '\n'; // stores the last word -- loop stopped because

// this word was trailed by a newline. ..

cout << "You entered:\n\t" << line << '\n';

Here we have added a second string named line which accumulates — summation style — the
words and spaces between them. (The reason this isn't a for loop like our earlier summation examples
is that this one isn't bounded by a known limit. We have no idea ahead of time how many words the
user will enter on a line. Since it is an unknown number of repetitions, we use a while loop instead.

3.8.2.6.1 A Deeper Look at Concatenation

I'd like to also have a word with you about that concatenation of a space character. In the spirit of
full disclosure, however, | feel | should tell you that concatenation is pretty free form within certain
limitations.

Let s be a string object, ¢ a char, and L a literal string. Then you can concatenate:

+ o+ 4+ o+ o+

EFn o n n
n | n o

But you cannot concatenate just chars or string literals:

L1 + L2
+ C

c + L

cl + c2

To accomplish these needs a helper string object:

string t = L1;
.t + L2

(© Jason James @80 92 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

or:

string t(L);
.t +c ...

for instance.

Others of these are trickier:

string t = c;

will fail miserably... This is because, there is not a constructor that takes a single char and makes it a
string! Odd, but true. ..

Thus we must fall back on our old friend:

string ul(n, c);

where n is a non-negative integer and c is a char. We'll just use 1 for the integer so we only get one
copy:

string t(1, c);
.t + L

or:

string t(1, cl);
.t +c2 ...,

And now they work fine.

Now that the first pair of concatends is fixed up to have a string object, the result will of course
be a string object and we can continue using it to concatenate any string, literal string, or char that
we need or want!

That is, we could have done that long ago display of "Hello Jason!\n" as all concatenation:

cout << t + s + "!\n";

This evaluates as:

cout << ((t + 8) + "I\n");

Or there's even:

cout << t + s+ 'I'' + '"\n';

which evaluates as:

cout << (((t +s) + '"1') + '"\n');

Not that you necessarily would, but you could!

(© Jason James @80 93 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

But, to make things a little easier than stopping and making all these helper variables — how would
you name them, anyway?! — we'll learn a new trick called anonymous construction! This looks like you
are declaring a variable (object) but you just don't give it a name!

string(l, c) + L
string(L) + ¢

Note how we have just the syntax for declaring our temporary variable but without its name. Thus
both string(1, c) and string(L) will be anonymous objects — memory space without a name.

We could even use this to make those borders mentioned above without having to come up with a
name or making it a constant or such:

cout << '\t' << string(70, '¥') << '\n';

3.8.2.6.2 Back to Our Goal

But back to our goal of reading the user’s input as a single string. Another technique for gathering the
user's multi-word data that will respect their relative spacing — the amount (and even type of) space
that they place between words, before words, even after words!?!

This technique uses the function getline. It comes from the string library and gathers an entire
line of input text into a string from an input stream. In its simplest form, we could just call it like so:

getline(cin, s);

This reads every-

thing from the given To End. But Where
input stream (cin) :

and up to a newline
("\n") and stores it
into the given string
object (s).

The newline is

By default, getline ends its reading at a '\n' character. That is the way cin signals that
the user hit /, after all. But in some situations, we've found that we like to end
at some other character. So getline can be called with three parameters: the input stream
from which to get data, the string in which to store the data, and a char at whose input
we stop — a terminator of the input, if you will. As with the "\n’, this terminating char is

removed from the input stream but not stored in the string.

then removed from

the stream, but not stored into the string.

Why didn't they code it as cin.getline? Suffice it to say that both objects were deemed focal to
the process — both cin and s here — and so neither could be chosen as the object to 'dot’ for the call.
Therefore they were both sent in as input to the function: where to retrieve the chars from and where
to store them to, respectively.

But this has a weird issue. If you perform the getline call 'immediately’?? following an extraction
(>>), getline will return right away and give you an empty string. It won't even cause the program
to pause and let your user read the prompt, much less type anything in reply. That's because extraction
always leaves behind a straggling newline — from when the user hit / earlier. That whitespace
Jjust signaled the end of the translation to >> and was left behind in the input buffer to await later pointing
and laughing as it attempted to be input.?

21| know it doesn't seem like much to respect their spacing that much, but it can be important in certain application-
s/situations.

22)mmediately in the eyes of cin. Nothing else has happened to cin in the intervening statements of the program, that
is.

23 Just kidding again. No one is in the buffer area pointing and laughing. But it feels like it sometimes when we make a
mistake, doesn't it?

(© Jason James @80 94 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

But then you used getline which tries to respect all spacing except it uses the newline specially as
a signal to stop storing characters into the specified string. When it sees the newline as its first input
char, it says, "Hey, I'm done!” and sends you back an empty string as proof of its hard work.

Ideally the programmer responsible for the extraction could be goaded into cleaning up after them-
selves, but this may not be feasible. So often we must clean up the stray newline ourselves.

A proactive approach to this would involve peeking for a newline and throwing it out before our
getline attempt. But a sudden peek isn't always respectful of prompt displaying issues, as we well
know. And we can't just throw out the whitespace with ws as we did before because we are trying to
respect the user’s relative spacing — the whole reason for this getline nonsense! So we'll have to tell
cout to display any waiting prompt ourselves with a flush:

cout << "Enter your sentence/phrase: ";
cout.flush(); // or cout << flush;
if (cin.peek() == '\n')
{

cin.ignore();
}

getline(cin, line);

cout << "You entered:\n\t'" << line << "'\n";

We could instead take a more reactive stance:

getline(cin, t);
while (t.empty()) // t.length() == 0
{

getline(cin, t);

Not always the best tool, but useful in some situations. Mainly it gives us the chance to learn the
empty and length functions from the string class. empty reports whether the calling string has no
characters right now — a true/false result, of course.

length, on the other hand, returns the number of characters currently in a string object. Which is
better? That's for you and your programming team to decide in the moment!

3.8.2.7 Return to Menus

When last we left menus, we had implemented synchronicity and sub-menus. Now let's take another
look at the synchronicity code to see what the string class can do for us there.

Our last stab at synchronicity had this as the menu display:

cout << "\t\tMain Menu\n\n"
"1) do Junk\n"

"2) do Stuff";
if (! junk_done)
{
cout << " [not currently available]";
}

cout << "\n"
"3) Quit\n\n"
"Choice: ";

(© Jason James @80 95 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

That's all well and good, but why break up a perfectly good cout like that? If we install a new string
variable for that currently available message, we can streamline things a bit:

string junk_message = " [not currently available]";

cout << "\t\tMain Menu\n\n"
"1) do Junk\n"
"2) do Stuff" << junk_message << "\n"
"3) Quit\n\n"

"Choice: ";

then just a tweak in the Junk branch:

if (choice == '1' || choice == 'J')

{
cout << "\nOption 1 -- JUNK -- Chosen!\n\n";
junk_done = true;
junk_message = "";

If you are toggling instead of just synchronizing, we need to tweak the Stuff branch, too:

else if (choice == '2' || choice == 'S')
{
if (! junk_done)
{
cout << "\nPlease choose option 1 (junk) first...\n\n";
}
else
{
cout << "\nOption 2 -- STUFF -- Chosen!\n\n";
//junk_done = false;
//junk_message = " [not currently available]";
}

But, as we implement that last change, we get an idea! The junk_done variable is kinda redundant
now. With junk_message in tow, we don't need the second variable. We could just check whether or
not junk_message was empty instead of whether junk_done was true or false everywhere:

if (choice == '1' || choice == 'J')

{
cout << "\nOption 1 -- JUNK -- Chosen!\n\n";

junk_message = "";

}
else if (choice == '2' || choice == 'S')
{
if (! junk_message.empty())
{
cout << "\nPlease choose option 1 (junk) first...\n\n";
}
GILEIE

(© Jason James @80 96 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

cout << "\nOption 2 -- STUFF -- Chosen!\n\n";
//junk_message = " [not currently available]";

This simplifies our life and our code.

3.8.2.8 string Comparison

To compare two string objects we can use all the normal comparison operators:

== II= > >= < <=

All of these work and give ASClI-betical results as per typical dictionary order. (Just like they did with
char, but with more oomph!)

That is, "Apple" < "apple" would result in true

You can even compare a string object to a literal string or to a single char. I'm not sure why you'd
do the latter, but you could... And you can still compare two char values to one another. But you
cannot compare two literal string values to one another. That apple thing above was just a 'for example’
— not real code. To perform such a test, you would have to store one of the two in a string object
(named or anonymous):

string t{"Apple"};
if (t < "apple")
{

cout << "This always executes...\n";

You also can't compare chars to literal strings. But why would you want to do that, anyway? (You
can still use a helper object or an anonymous object to make these comparisons work correctly, but they'll
still be in ASClI-betical order.)

But there is one other way to compare strings: the compare function. The compare function is like
all six comparison operations combined into one action! In order to do this, it needs more than a mere
bool result, of course, so it uses a small integer (we'll consider it a short). The way to use this result
is summarized by the following table:

| want to know if. .. So | code...
sl < s2 sl.compare(s2) < O
sl == 82 sl.compare(s2) ==
sl > s2 sl.compare(s2) > O

You can even do multi-combinations, of course, like if you wanted to know that the first string was
less than or equal to the second (s1 <= s2), you could code to check .compare()’s result against 0
with <= like this:

if (sl.compare(s2) <= 0)
{
¥

for instance.

(© Jason James @80 97 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

So this combining of the comparison results into a single integer makes the compare function more
efficient than having to call on any pair, trio, or even more of the comparison operators. For example,
to completely piece out the relationship that two string values have, we'd need to code:

if (sl < s2)
{

cout << "first is lexicographically before second\n";
}
else if (s1 > s2)
{

cout << "first is lexicographically after second\n";
by
else // sl == s2 by necessity
{

cout << "first is lexicographically the same as second\n";
}

This must on occasion evaluate two comparisons to properly orient the strings. (Note that this is
the pattern we often follow because it works with almost any kind of data and helps with those tricky
floating point data to avoid having an == test involved.)

With the .compare () function, | can instead code:

short comp_res;

comp_res = sl.compare(s2);

if (comp_res < 0) // s1 < s2
{

cout << "first is lexicographically before second\n";
by
else if (comp_res > 0) // sl > s2
{

cout << "first is lexicographically after second\n";
}
else // sl == s2 by necessity
{

cout << "first is lexicographically the same as second\n";
b

And thus only have to compare the strings themselves once but still have all the relevant information
for my processing needs.

Is this efficiency necessary? Yes, because, as you'll see shortly, comparing strings can be terribly
expensive.

But it is still ASCll-betical in nature. *sigh*

So we should probably fix that, hunh? Let’s look at how compare or any of the comparison operators
do their job and see if we can come up with a way to fix it.

Efficiency is, as usual, our goal. So what do these comparison functions do? Well, they line the
strings up next to one another and look at them char-by-char until a difference is encountered and then
use the way those two differing chars compare to decide the string pairs’ result. For instance:

(© Jason James @80 98 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

Apple
apple

difference! and 'A' is < 'a', so "Apple" must be < "apple"

or:

apple
application
RN
R
Tl

difference! and 'e' is < 'i', so "apple" must be < "application"

\.

or even:

apple

apple
ARRE
RN
R
o1

ran out of string! always ==, so "apple" must be == to "apple"

Etc. To do such a thing, we'll need several helpers. One of them we already know: while. We'll
need it to walk from char to char along the aligned strings. But we'll also need to be able to do other
things: tell what an individual char from a string is, tell how many chars are currently in a string,
and ... well, the other one will become more obvious in context.

So let’s think about this step by step. We need to walk from one position of the strings to the next
until we either reach the end or find a difference in the characters at the two aligned positions. We could
use our while loop to do this if we just knew those other pieces: what are positions within the string,
how many of them are there, and how do we specify which one we want to look at?

The positions within the string turn out to be offsets or distances from the beginning of the string.
That is, instead of numbering the relative positions of characters within the sequence starting at 1 like
many folks would, computer scientists number them starting with 0. Here is a diagram of how a comp-sci
looks at a string in memory:

The mathematicians would use subscripts to distinguish the individual characters from one another
— 50,51, 5,53, 54 — but we can't really do that in a plain text environment, can we? So, instead,
our ancestor C programmers decided that the logical alternative to subscripts was to place the relative
position inside a pair of square brackets. Let's say that the string "apple" was named s, then we could
access the 'e' by:

(© Jason James @80 99 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

(= |

This is still called subscripting despite the syntax. But it is also known as indexing. 4 is the subscript
or index, s is the subscripted or indexed variable/object, and 'e' would be the result.

But if we are going to programmatically walk a while loop from one position to the next, we need
to have a variable to control this walk: a loop control variable (LCV)! And if we need a variable, we need
to first know its data type — for declaration purposes.

The most appropriate data type would obviously be some kind of unsigned integer. It doesn’t need
negatives, after all since we start at 0. And it doesn’t need decimals as each position is a discrete jump
from the previous and next.

But which one? We have 4 unsigned integer types: unsigned short, unsigned int, unsigned long,
and unsigned long long. Well, the string class has taken over that decision for us, thankfully. They
have made a decision based on the specific characteristics of the system you are compiling to that will
be appropriate for any string that system can hold.

To keep you from further worry about the issue of which unsigned integer type was chosen, they
even gave it a platform-independent name: size_type. (This is analogous to how the ctime library's
time function named its resulting type time_t so you didn't have to worry what type was big enough to
hold the seconds since the epoch.)

They named it size_type because any type capable of holding the size of the string would also be
capable of holding all the positions leading up to that value. But there is a slight complication. They
put this alias for the underlying unsigned integer inside the string class. This means our notation for
using this data type name is going to be string: :size_type. Isn't that horrible looking?

(This could have been worse, if you have to access this data type name without a using directive in
effect, it is truly: std::string: :size_type. After all, the string class that size_type is inside of
is itself inside of the namespace std..!)

Similar to how we made our own constants before to ease use of the ios_base:: flag constants
for stream formatting, we can use one of two other facilities to rename the string's size_type alias
to our own type name: typedef or using aliasing. typedef makes a type definition. In our case, we
are simply defining our type name to represent the same thing as a previously known type — renaming
another type. So, for instance, you might do:

[typedef string::size_type StrSz;

or:

[typedef string::size_type StrPos;

Or both! (It depends on if you want to focus on this type being for sizes of string objects or for positions
within them.)

Notice that if you cover the typedef keyword itself, the rest will look just like a variable declaration.
(Assuming you can make yourself realize string: :size_type is the name of a type. And that is no
small task for many students!)

Place this statement between your using directive and your main’s head to rename the string's
size_type alias to some name you can more easily remember/type. (Like constants, typedef's can be
placed globally — outside the main function. We never do this with variables and we'll talk about the
problems that lead us to that decision in Chapter 4.)

The using alias is similar to this?* It makes an alias for the given type but its syntax is inside out

24But different from a using directive!

(© Jason James @80 100 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

from the typedef:

using StrSz = string::size_type;
using StrPos = string::size_type;

But we need one more piece of info before we can form our first approximation to the string
comparison loop: how long is the string? Without this, we cannot stop before accessing outside the
string — a memory access violation waiting to happen!?®

Turns out, the string class provides both the .size() and .length() functions toward this
purpose.?® In fact, they both return the exact same result. There are two of them to make each
programmer feel comfortable in their word choice for their situation. (Weird, no?)

So, without further ado, | present you the "walk through a string” loop:

string s;
string: :size_type c{0};
while (¢ != s.length())
{
// use s[c] somehow
++C;

)

At the end of this loop, ¢ will be equal to s.1length() (or s.size() if you prefer). And at each position
we can use c to subscript the string toward some end.

Now let's put in the parallel/aligned string:

string s, t;

string: :size_type c{0};

while (¢ != s.length() &&
c != t.length(Q))

// use s[c] and t[c] somehow
++C;

)

Note that DeMorgan's laws make us use an && here to combine our boundary tests. We want the
loop to end when either string's boundary has been breached (¢ == 7.length()) and so that's:

¢ == s.length() || ¢ == t.length()

But we want the loop to continue in the opposite situation and so the == tests must be negated and the
| | must transform to an && as well!

Now, to find the difference between our aligned characters — s[c] and t[c] — we just need to
compare them. We'll initially record this comparison in a bool variable that indicates "all previously
inspected parallel character pairs were equal”. But that's quite the mouthful. It also could be seen —
opposingly — to represent that " a difference in the parallel character pairs has been encountered”. This
is easily shortened to diff_found like so:

25This kind of violation is often known as a segmentation fault because you go outside your segment of memory.
26\We actually saw .length() already, but .size() works, too.

(© Jason James @80 101 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

string s, t;

string: :size_type c{0};

bool diff_found{false};

while (¢ != s.length() &&
c != t.length() &&
I diff_found)

{
if (slc] !'= tlc])
{
diff_found = true;
}
++C;
¥

Here diff_found is initially false because we haven't inspected any character pairs and so there
have been no differences spotted as yet. We && it to the boundary tests to make it of equal importance
in stopping our loop as soon as a difference is spotted. But it is negated because we want to keep going
when we haven't yet seen a difference — the pairs of characters are still all equal.

The nested if takes care of resetting the value of diff_found. But, truly, it isn't necessary. We
could equally well have coded it like so:

string s, t;

string: :size_type c{0};

bool diff_found{false};

while (¢ != s.length() &&
c != t.length() &&
I diff_found)

diff_found = (slc] '= tlc]);
++c:

)

It does, after all, store the truth value of the !'= comparison in diff_found — we had just cut out
the else branch that would have stored false because it was already false from initialization.

But now we can more easily see that this is really an integral part of the loop control rather than
internal to the loop body. After all, we want to stop as soon as we find the difference? So, we should
probably code more directly:

string s, t;

string: :size_type c{0};

while (¢ != s.length() &&
c != t.length() &&
slc] == tlecl)

++C

Note how the != became an == since we had been negating diff_found before... (This is a safe
combination because the &&s will short-circuit to false and stop the while loop before subscripting with
an illegal position. If we'd commuted the && clauses, we might accidentally walk outside the strings'’
boundaries before checking this possibility! Remember the segmentation fault? It turns out that even
small things like the order of tests being &&'d together is important!)

(© Jason James @80 102 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

Next we need to post-process this loop will make the final decision as to whether or not the two
strings are <, ==, or > and in what order. But when the loop ends, we just know that we've found the
end of a string or the position of difference — we don’t know yet which it was that stopped the loop.
(Also note that the second occasion was aided by the merging of the difference finding into the loop
head to avoid the extra position bump! That is, we didn’t update c again after the diff_found would
have caused the loop to stop anyway.)

To recap our cases:

strings lengths | End Position
apple 5

VS 4
application 11
apple

Vs 0
Apple 5
apple 5

VS 3
app 3
apple 5

VS 5
apple 5

So we might end up inside the two strings or at the end of at least one of them. We should probably
eliminate the possibility that we've overrun one of the strings first for safety (just like our && clauses
did via the &&'s short-circuit evaluation).

But, what string did we run off of 7 Either the shorter one or both simultaneously, right? And if the
both situation, aren't they both the 'shorter’'? Well, sort-of. We might even make our while slightly
more efficient with this idea (and it will certainly make our post-processing more efficient...):

string s, t;
string: :size_type c, shorter_length{s.length()};
if (t.length() < shorter_length)
{
shorter_length = t.length();
}
c = 0;
while (¢ != shorter_length && s[c] == t[c])
{
++C;
}

A little pre-processing has cut our && clauses by a third! And the longer the common [equal] prefix
these strings share, the bigger savings that will become!

Now to post-process. One way is:

if (s.length() == t.length()) // the two have the same length

{
if (¢ == s.length()) // and we reached the end
{
comp_res = 0; // equal!
}
else if (slcl > tlcl) // 1st is > here

(© Jason James @80 103 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making

Programming Basics

3.8.

Standard Libraries Il

{
comp_res = +1;
}
else // slc] must be < t[c]
{
comp_res = -1;
}
}
GILEIE
{
if (¢ == shorter_length)
{
if (s.length() ==
shorter_length)
{
comp_res = -1;
}
cllise
{
comp_res = +1;
}
}
else
{
if (slcl > tlcl)
{
comp_res = +1;
}
else // slc] must be < t[c]
{
comp_res = —1;
}
}
}

// greater!
// 1st is < here

// less!

// strings were of different lengths

// ¢ reached end of one

// it was
// the 1st

// less!
// 2nd must have been shorter

// greater!

// ¢ must have still been inside
// 1st is > here
// greater!
// 1st is < here

// less!

Wow! That was quite the mouthful! A further analysis of these situations leads to a simpler branching

structure:
if (¢ == shorter_length) // reached end of at least one string
{
if (s.length() == t.length()) // they were same!
{
comp_res = 0;
}
else if (s.length() == shorter_length) // 1st is shorter
{
comp_res = —1;
}
else // 1st is longer
{
comp_res = +1;
}

(© Jason James @80

EY MG TR

104 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il
}
else // stuck in the middle of both strings -- can't be equal
{
if (slcl > tlcl)
{
comp_res = +1; // 1lst is greater
¥
ellise
{
comp_res = -1; // 1st is less
}

But we've just rewritten . compare()! What about getting rid of the ASClI-betical nightmare that is
case sensitivity? That part is actually quite easy. Just wrap all character comparisons in a call to either
toupper or tolower as suits your tastes:

while (¢ != shorter_length &&
tolower(s[c]) == tolower(tl[c]))
// ...
if (tolower(s[cl]) > tolower(tlcl)) // fold case

Now the upper or lower caseness of the string's chars is ignored during comparison. As the comment
says, we fold the case into a single possibility so we don't worry with either.

3.8.2.9 Centering strings

When printing a program title thus far, we've been just tabbing over a bit to make it look 'nice’. But
if we could center that title, it would look even better! The only thing stopping us now is figuring out
the width of the user's window. By standard agreement, all terminal windows start out as 80 characters
wide. The modern user is apt to grab the edges of this window and drag it wider, but we cannot account
for that kind of shenanigans. So we'll stick with an 80 character line for our title centering.

The code for this is quite simple. Let’s say the program'’s title is stored in a variable called prog_title.
Then we can do the following:

string welcome = "Welcome to the " + prog_title + " Program!";
cout << string((80 - welcome.length()) / 2, ' ') << welcome << "\n\n";

This is as centered as it can get. Even though when the program’s title has an odd length this will
leave a space one shorter to the left side of the message than to the right. This is, of course, because
of the integer truncation of the division. But you can’t print half a space, anyway!

3.8.2.10 Find & Replace

One of the most popular activities to perform with a sequence of characters — a string — is to search
for sub-sequences within it or to replace one sub-sequence with another. To help with these tasks, the
string class provides a multitude of functions to suit almost every possible situation!

Function Description
.find(s) find sub-string s within the calling string
.rfind(s) find forward-facing sub-string s within the calling string
searching backward from the rear of the string

These can be used, for example, to find any "the" sequence in a line of text:

(© Jason James @80 105 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il
// 1 2 3 4 5
// 0123456789012345678901234567890123456789012345678901

string a{"The fox jumped quickly over the lithe brown feather."};
string::size_type front, rear;

front = a.find("the"); // is set to 28
rear = a.rfind("the"); // is set to 47

Note that the front occurrence of "the" is not at position 0. The search is case sensitive as is
normal in the computer.

Also note that the rear occurrence of "the" is not also 28. This is because it is not a word matcher
but a substring matcher — any matching sequence makes it work.

And what happens when the sub-sequence is NOT found? Well, a value greater than or equal to
the length of the calling string is returned. It's name is string: :npos. It stands for "your search was
Not found at any POSition”. You can check for this by testing the returned value's equality with this
constant or simply see if the returned value is strictly less than the calling string's length:

if (str.find(s) < str.length()) // or: str.find(s) != string::npos
{
// okay to use this position

}

else

{
// couldn't find s in str!

But what would you want to use the *find ()?” result for? Probably to focus on that sub-sequence
of characters for further operations like:

Function Description
.find(s, p) as £ind(s) beginning at position p
.rfind(s, p) as rfind(s) beginning from position p
.insert(p, s) insert s in front of p
.erase(p, n) erase n characters starting at p
.erase(p) erase all characters from p to the end of the string
.replace(p, n, s) replace n characters at p with s

(Or maybe for subscripting?)

In all of these, p represents the position in front of which to insert, at which to begin erasing, or at
which to replace. To find this position, you'll typically have to *find () it first:

if (str.find(s) < str.length()) // or: str.find(s) != string::npos
{
str.replace(str.find(s), s.length(), "new string");

}

else

{

cout << "Couldn't find '" << s << "' in string!\a\n";

27The * notation here is used to represent some sequence of characters like the r for rfind or even the empty sequence
like found in front of find itself!

(© Jason James @80 106 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

But we could easily make this more efficient — cutting out the multiple calls to find — if we used
our friend size_type to store the result in a variable:

string::size_type pos = str.find(s);
if (pos < str.length()) // or: pos != string::npos
{
str.replace(pos, s.length(), "new string");
}
else
{
cout << "Couldn't find '" << s << "' in string!\a\n";
}

But who wants to replace just the first occurrence? Most people want to find and replace all copies
of the text in the original string, don't you think? To accomplish this, we'd need to put the process in
a loop like so:

pos = str.find(s);
while (pos < str.length()) // or: pos != string::npos
{

str.replace(pos, s.length(), "new string");

pos = str.find(s, pos);

Here we've looked for the text to replace and, when found, replaced it with the new text and
searched for the next occurrence of the text to replace. This continues until the text to replace is not
found.

A typical use of this loop might be to replace all tabs in an input string with single spaces:

pos = entered.find('\t');
while (pos < entered.length()) // or: pos != string::npos
{
entered.replace(pos, 1, " "); // contrast ' ' !
pos = entered.find('\t', pos);

Note that, even thought the replacement text is a single space, we must enclose it in double quotes.
The replace function doesn't accept single chars.

Of course, having replaced all tabs with single spaces, we may have created a double-space scenario
in the string. Or, they may have just double-tapped the by habit or accident. Then we should
replace these doubled spaces with single spaces, too:

pos = entered.find(" ");
while (pos < entered.length()) // or: pos != string::npos
{

entered.replace(pos, 2, " ");

pos = entered.find(" ", pos);

Be careful if you type this into your program to use, make sure the first and last literal strings have
two spaces inside and the middle one only has one space. If you aren’t careful, this could cause a truly
explosive situation!

(© Jason James @80 107 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

What do | mean by 'explosive’ ? | mean an infinite replacement! Let's say that you were replacing all
the "The" sub-strings with "There" for some reason. This is quite dangerous. Let's explore:

The first

There first ...
Therere first
Thererere first
Therererere first ...

This will go on and on and on until the user runs out of memory! The reason is that we are searching
for the next occurrence of "The" from the same spot we found it before. Earlier we would replace the
original sub-string with something that looked different. This time, however, the replacement text
contains a copy of the search text. This causes the infinite replacement pattern seen above.

To avoid this possibility, we can use an offset. We'll let the search start a little further along the
second and later times we look for the search text at least when the search text is a sub-string of the
replacement text:

if (replace_with.find(search_for) < replace_with.length())
{
cerr << "Warning! You've got a potentially infinite "
"replacement! Adjusting...\n";
offset = replace_with.length();
// minimum offset is replace_with.rfind(search_for) + 1, but
// this is easier and even safer.
}
else
{
offset = O;
}

Now when the text to search_for is detected as a sub-string within the text we want to replace_with,
we set an offset (which is of data type string: :size_type, of course) to move the next search a
little further over than just where we found the last occurrence of search_for. Otherwise, we leave the
position alone with a 0 offset:

pos = entered.find(search_for);

while (pos < entered.length())

{
entered.replace(pos, search_for.length(), replace_with);
pos = entered.find(search_for, pos + offset);

Why the 0 for offset when it is safe? Why not always scoot over further? Well, if we always moved
further over, we'd mess up that double-space to single-space substitution, for instance. To work most
effectively, that needs to be an in-place search so that it will reduce triple space sequences and four-space
sequences and so on to single spaces. (Think it over...it's quite the eye-opener!)

Why do | keep using a less-than test against the length of the string | searched within instead of the
earlier suggested npos test? It tends to hurt not just beginners' heads but even seasoned programmers’
heads to have that double negative test there. (You know, 'not equal to the non-position’.) However,
as | think we've seen, it is more effective in typing for many situations — it is quite a bit shorter than
replace_with.length() for instance.

Finally, what about that comment in the offset branch about using rfind? That is true. We could

(© Jason James @80 108 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

have used that version of the offset initialization, but using simply the length is both easier to type
and safer. Whether it meets every user’s needs is a matter of study and/or opinion. | leave that decision
to you and your teacher.

Another way to have tackled this particular infinite replacement would have been to watch for word
boundaries during the search. This at first thought seems ridiculous, but it isn't really that hard as it
turns out.

We can take one of two approaches. One is limiting to particular scenarios and the other is more
easily extensible.

The first approach — the limiting one — is to use the cctype classification functions to watch for
word boundaries. We can do this like so:

pos = entered.find(search_for);
while (pos < entered.length())
{
if ((pos == 0 || ! isalpha(entered[pos - 1])) // at beginning of word
&& // and
(pos+search_for.length() >= entered.length() [| // at end of
! isalpha(entered[pos+search_for.length()]))) // word
{
entered.replace(pos, search_for.length(), replace_with);
offset = 0;
}
else
{
offset = search_for.length();
}
pos = entered.find(search_for, pos + offset);
}

Here we've checked that the char before our match was not a letter or there was no char before our
match to confirm that we were at the beginning of a word. We've also made sure that either our match
ended the string or what followed wasn’t a letter to confirm that we were at the end of a word. Only
if both these conditions were true have we replaced the target text with the new text. Further, if we
replace the text, we can offset the next search not at all. But if we don't match, we must offset to
avoid finding the same non-word match again.

What of the second approach? For that one, we get to specify exactly what constitutes a non-word
character. This might seem more limited at first than just using everything that isn't a letter on the
system, but it is more configurable to different applications’ needs and so is the more general approach.
We start with our lists or non-word characters:

v <D D &TRSHE! TN/ [7=
" \t\n\r\v\f\b\a";

const string word_seps = space + punct;

const string punct
const string space

I've named the group of all non-word characters word_seps because they are the characters that
separate words. | have taken a couple of liberties with the list of spacing characters, | suppose. | don't
know that most people would qualify the "alarm’ escape as a space ("\a'). And backspace ("\b") might
not be a space, either, in many people’s views. But the rest are definitely whitespace — space, tab,
newline, carriage return, vertical tab, and form feed.

So what do we do with these? We check the before and after characters of our match against them:

(© Jason James @80 109 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il
pos = entered.find(search_for);
while (pos < entered.length())
{
if ((pos == |l // at beginning of word
word_seps.find(entered[pos - 1]) != string: :npos)
&& // and
(pos+search_for.length() >= entered.length() || // at end of word
word_seps.find(entered[pos + search_for.length()]) != string: :npos))
{
entered.replace(pos, search_for.length(), replace_with);
offset = 0;
}
else
{
offset = search_for.length();
¥
pos = entered.find(search_for, pos + offset);
¥

See how we use the find function to check that we did find the characters before or after in the
word_seps. (Remember, not the non-position is really a position.)

3.8.2.11 Processing One Word at a Time

Now let's say the user has entered a line of text and they need something done to each word in the
line. Maybe it's something fun like Pig-Latin translation. Maybe it's something weird like reversing each
word's letters. Maybe it's something more serious. Who knows! But they need it done and they need it
done now!

The problem with the first of the above methods of finding words is that it just checked for letters vs.
non-letters. The second method brought punctuation into consideration and limited us to punctuation
for a particular application. For instance, dashes can be part of words — like a hyphenated word — or
not — like the one just before this phrase. Single quotes (apostrophes) are the worst! Some people use
them to surround something for emphasis and they are also used for contractions and possessives. If the
user decides to edit all occurrences of "don" in their text because it is too archaic, we'd match the first
part of "don't" as well.

This can get worse if we are dealing with programmers who regularly consider an underscore as part of
a word not to be messed with — variable and constant names? What can we do? We could add special
negative checks to the word matching condition above. But it is already quite complicated. Maybe
another way would prove sleeker?

There are other find functions that come with the string class. These take a string value that
is used as a set or list of characters to either allow or disallow in the match. They then search through
the calling string for the first or last match. The first match is pretty clear, but 'last’ match? Those
versions search from the end of the string toward the front so the thing they find are later in the string
— the 'last’ match in the string from a front-oriented view. Here's a handy chart:

(© Jason James @80 110 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il
Function Description

.find_first_of(s) finds the position of the first character from s to match in the
calling string

.find_first_of (s, p) as find_first_of (s) but beginning from position p

.find_last_of(s) finds the position of the last character from s to match in the
calling string — looking from the end

.find_last_of (s, p) as find_last_of (s) but starting from position p — still mov-
ing toward the front

.find_first_not_of(s) finds the position of the first character matching none of those
in s

.find_first_not_of (s, p) as find_first_not_of (s) but beginning from position p

.find_last_not_of(s) finds the position of the last character from the calling string
to match none of those in s — looking from the end of the
calling string

.find_last_not_of (s, p) as find_last_not_of (s) but starting from position p — still
moving toward the front

Wow! That's a lot of functions! At least their names are fairly easy to remember. And each has a
version with a position specified instead of the default.

Let's look at a simple example or two first, and then we'll get back to our words in a line problem. ..

Let’'s suppose the we have this situation:

// 1 2 3 4 5

// 0123456789012345678901234567890123456789012345678901
string a{"The fox jumped quickly over the lithe brown feather."};
string::size_type front, rear;

front = a.find_first_of ("aeiouyAEIOUY"); // is set to 2 -- the 'e'
rear = a.find_first_not_of ("aeiouyAEIOUY"); // is set to 49 -- another 'e'!

On the other hand, if we used the starting position parameter, we could find:

front = a.find_first_of ("aeiouyAEIOUY", 3); // is set to 5 —-— the 'o'
rear = a.find_first_not_of ("aeiouyAEIOUY", 48); // is set to 46 -- an 'a'

Note that in both sets of searches, | found only lowercase letters even though | allowed for uppercase
to be found as well. This is due to the fact that only the first match is found and it just doesn’'t worry
about any other possibilities.

But how do we use these functions to find words in a line of text? That's fairly clever, really. We
start with finding the first thing that isn’t a word separator:

string: :size_type beg;
string line;

beg = line.find_first_not_of (word_seps) ;

Here we're reusing the word_seps constant from above and adding new variables for the user's line
of text and the beginning of the word. We would have read the 1ine in with getline earlier, of course.
Some of you are wondering why we are searching instead of just using the first character of the line
— position 0 — as the beginning of the word. Well, what if the user has put spacing ahead of the first
word like in the beginning of a paragraph? Maybe the user's 1ine starts with some kind of punctuation
like a quotation might. One never knows what the user is capable of! Be cautious. ..

(© Jason James @80 111 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

Now that we have the position of the first word, we should find its end. That can be done by reversing
our search:

string: :size_type end;

end = line.find_first_of (word_seps, beg);

Starting from the first letter of the first word, we look for the first character that is a word separator.
That signifies the end of the word so we store it in our end variable. Keep in mind, though, that beg is
in the word and end is just after the word’s content. This will become important shortly.

Now we have two options. We can pull out a copy of the word and then store it in a variable or
we can directly store the word into the variable without the intermediate copy. Said that way, it seems
obvious which to choose. But let's look at both tools just in case we want to use one more than another
in other coding situations. The latter approach uses the assign function:

string word;

word.assign(line, beg, end - beg);

This takes characters directly out of the 1ine variable and stores them immediately in the word
variable. The copying starts at the position beg and runs for end-beg characters. This difference
is exactly the length of the word we found. Why not +1 like we've done in the past with discrete
subtraction (random modulo base, page counting, etc.)? Well, this is just subtraction because the end
is not inclusive but exclusive. Since one end of the range is not included, we don’t have to add one to
put it back in after the difference is taken.

The other way to take out a word is to use the substr function like so:

string word;

word = line.substr(beg, end - beg);

This function copies the end-beg characters starting at beg from the 1ine and returns them as a
new string. Then we take that string and store it in our word variable. This is a little slower and
takes twice as much memory as the assign variation.

Now we'll add a little protection and get this code:

beg = line.find_first_not_of (word_seps) ;
end = line.find_first_of (word_seps, beg);
while (end < line.length()) // entire word inside string
{
word.assign(line, beg, end - beg);
cout << "Word: '" << word << "' \n";
beg = line.find_first_not_of (word_seps, end);
end = line.find_first_of (word_seps, beg);
}
// this if catches a word abutting the end of the string
if (beg < line.length())
{
word.assign(line, beg, line.length() - beg);
cout << "Word: '" << word << "'.\n";

(© Jason James @80 112 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

This should find all the words in the 1ine and report them out to the user. If we'd wanted to, we
could have done anything else to them in place of or in addition to the cout to print them back out.

3.8.2.11.1 Taking Care of the Apostrophes

Wait! What about those apostrophes? Oh, yeah. Let's see. We were worried about things like "don't"
and "Fred's" and the like, right? Okay. Let's double-check our constants:

const string punct = ";:.,><}{1[) (x&~%$#HO! " \"\\/ | P+=—_"";
const string space = " \t\n\r\v\f\b\a";
const string word_seps = space + punct;
const string::size_type MAYBE_SEP = word_seps.length() - 1;

Note that the apostrophe (single quote) is the last thing in the punctuation string. And there's a
new constant! It says that anything at or after this position is not necessarily a separator except under
special circumstances.

Let's see how we might use this constant in checking for contractions and possessives. We need to
check every time we find an end for a word that it really isn't a single quote for special circumstances.
It might play out like this:

beg = line.find_first_not_of (word_seps) ;
end = line.find_first_of (word_seps, beg);
while (end < line.length())
{
while (end < line.length() && // not off the end yet
word_seps.find(line[end]) >= MAYBE_SEP && // a possible separator
end+1 < line.length() && // it has a follower
word_seps.find(line[end + 1]) == string::npos)// followed by word
{ // bits
end = line.find_first_of (word_seps, end + 1); // move over and try
} // again
word.assign(line, beg, end - beg);
cout << "Word: '" << word << "' . \n";
beg = line.find_first_not_of (word_seps, end);
end = line.find_first_of (word_seps, beg);
}
if (beg < line.length())
{
word.assign(line, beg, line.length() - beg);
cout << "Word: '" << word << "' \n";
}

Note how we repeat our end search from just past where we last found the end. If we started at beg
or even at end, we'd find the same separator again. So we start the next search a little further down.

Why a loop, though? Well, I'm from the south. We talk very slowly down there, as you may have
heard. But we make up for it by having multiple contractions at a time: couldn’t've, I'd've, etc. This
needs a loop to work appropriately all over the country. *grin*

The only thing I'd add would be to watch for my personal pet rule: possessives of words ending in S
don’t have to have an extra S after the apostrophe. It isn't too hard and | think it would make a fine
exercise for the interested reader.?®

28|'ve always wanted to write a book just so | could say that!

(© Jason James @80 113 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

3.8.2.11.2 Handling the Inter-word Gaps

But if you are trying to transform them somehow and report them back out changed but still in context
as they were before, you'd need to keep track of what was before each word and possibly after the last
word. Let’s call this stuff the 'gap’ information. It could be spaces or punctuation. Some of it is between
words and some is before/after words. So | think gap is the best name we're gonna get. How would
things need to change in our code? Let's see:

string gap;

beg = line.find_first_not_of (word_seps);
if (beg !'= 0) // there is 'gap' in front of us!

{
// gap is the stuff before the first word
gap.assign(line, 0, beg - 0);
cout << "Leading gap: '" << gap << "'\n";
}
end = line.find_first_of (word_seps, beg);
while (end < line.length()) // entire word inside string
{
word.assign(line, beg, end - beg);
cout << "Word: '" << word << "'\n";
beg = line.find_first_not_of (word_seps, end);
gap.assign(line, end, beg - end);
cout << " Then gap: '" << gap << "'\n";
end = line.find_first_of (word_seps, beg);
}

// this if catches a word abutting the end of the string
// —-— i.e. no trailing 'gap'
if (beg < line.length())
{
word.assign(line, beg, line.length() - beg);
cout << "Word: '" << word << "'\n";

Here gap is a new string that will hold those non-word characters from the user's original line
of input. The first copy needs to be protected because a 0-length gap would look odd begin displayed.
Maybe we could have taken this approach instead, though:

// gap might be the stuff before the first word
gap.assign(line, 0, beg - 0);

if (! gap.empty()) // there is 'gap' in front of us!
{

cout << "Leading gap: '" << gap << "'\n";

This might make some people on your team happier since it doesn’'t make it look like the branch was
the assign function’s fault. But others would point out that the first version keeps us from calling for
a rather silly 0-length assignment in the first place. So maybe that one with a better comment.

3.8.2.12 Making string Content Name-case

One thing that we often need to do to user data is change its case more permanently than we did in
the comparison section above (section 3.8.2.8). This is because the user will often type things into the

(© Jason James @80 114 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

program in either all lowercase or all uppercase depending on when they last hit . Many don't
even pay attention to what they are doing!

So in a report, we might want a business name or user's name to look nice and in a proper way.?°
To do this, we'll have to visit every character and make sure it is the right case for its position in the
string. We made this kind of loop in the comparison section, actually, but it was designed to stop when
a mismatch in the parallel strings was found. This time we'll be processing all the characters in the
string, so we'll use a for loop instead of a while loop:

string first;
// read in the user's first name
for (string::size_type c{0}; c != first.length(); ++c)
{
// do something with first[c]

Of course we want to change the elements of the string into proper case where that comment is.
But we have three choices. One is to try to change the first character to uppercase before the loop and
shorten the loop. The second is to change the first character to uppercase after the loop — reprocessing
it from the lowercase the loop made it. And the third is to make the decision as to whether we are
doing the first character inside the loop. Each can be found in 'wild" code out in industry, but prevalence
doesn’'t make it right.

Let’'s start with the last one:

string first;
for (string::size_type c{0}; c !'= first.length(); ++c)
{
if (¢ ==0)
{
first([c] = static_cast<char>(toupper(firstl[c]));
}
else
{
first[c] = static_cast<char>(tolower(first[c]l));
¥
}

Remember that the static_cast is needed here because these transformation functions from cctype
return an ASCII code as an integer instead of an actual char.

While this works fine, it has to decide on every character of their name if that really is the first
character or not. After the first loop, this is a wasteful test taking up the user's precious time. That's
why it might be better to do the uppercasing either before or after the loop rather than inside it.

Let's try doing the uppercase transformation before the loop:

string first;

if (! first.empty())

{
first[0] = static_cast<char>(toupper(first[0]));
for (string::size_type c{1}; c != first.length(); ++c)
{

29By proper here, | mean cased like a name: first letter uppercase and rest lowercase. This is sometimes called name-
casing the string. Some applications call for this, others demand it not be done. Which situation are you in this time?

(© Jason James @80 115 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

first[c] = static_cast<char>(tolower(firstl[cl));

Here we have to protect the initial subscript of the first character with a not empty test. Before
all the subscripting was inside the loop and its condition protected them. Now the [0] is before the
loop and needs separate protection. | included the loop inside the if because it now assumes at least
one character in the string — which the if condition guarantees. If we put it outside the branch, it
wouldn't be so protected and a zero-length string would cause trouble in the loop!

How? Well, let's test it. ¢ would start at 1 which would be unequal to the length of 0 so the loop
would start. Then we'd access the 0 position and the program would crash — hopefully.3® We could
change the test to < instead of !=, but the latter is more popular these days and we don't wanna look
weird in front of the other programmers, do we? *smile*

Finally, let's explore the uppercasing being after the loop:

string first;
for (string::size_type c{0}; c != first.length(); ++c)
{
first[c] = static_cast<char>(tolower(first[c]l));
¥
first[0] = static_cast<char>(toupper(first[0]));

Here we have to reprocess the first character of the user’'s name once — processing it overall twice.
But the syntax is clean and the speed is quite nice. This is my personal preference amongst the three
variations.

What if they want to do this with a whole name instead of just their first (or maybe last) name?
We'd just have to put this loop and assignment of the uppercase front letter inside the word extracting
loop above:

beg = line.find_first_not_of (word_seps);
end = line.find_first_of (word_seps, beg);
while (end < line.length())

{
word.assign(line, beg, end - beg);
for (string::size_type c{0}; c¢ != word.length(); ++c)
{
word[c] = static_cast<char>(tolower(word[c]));
}
word[0] = static_cast<char>(toupper(word[0]));
cout << "Word: '" << word << "'.\n";
beg = line.find_word_not_of (word_seps, end) ;
end = line.find_word_of (word_seps, beg);
}
if (beg < line.length())
{

word.assign(line, beg, line.length() - beg);
for (string::size_type c{0}; c != word.length(); ++c)
{

word[c] = static_cast<char>(tolower(word[c]));

30More on that in the next section!

(© Jason James @80 116 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il
}
word[0] = static_cast<char>(toupper(word[0]));
cout << "Word: '" << word << "' \n";
}

Now we've at least done something with those words we were extracting. *smile*

3.8.3 Processing exceptions

So far, we've been accessing individual chars in a string with the subscript (or indexing) operator ([]).
This either gives you the value at a particular position within a string or fails. Sometimes the failure to
find that character crashes the program, sometimes it does not. We've been very careful with ifs and
loop conditions to NOT go off the end of the string.

If we wanted more of a guarantee of a crash when we did make a mistake, however, we could use a
different access method known as at. It is called with the dot (.) operator and the string on the left
of that. Then you put the position you want inside the parentheses of your call to the at function:

[s.at(0)]

This would access the first character of the string s or crash the program if s were empty.

Why would we want to guarantee a crash? It could help in the debugging phase of program devel-
opment to find a problem more quickly if we guarantee a crash instead of just hope we've done due
diligence with our bounds checking. Then it is just up to our thorough testing to find all those crashes.

So how does at guarantee the crash? Well, it will cause what is known as an exception in the program
when it detects our access for a string is out of bounds. In fact, that's the name of the exception it
causes: out_of_bounds. When an exception is never dealt with in a program, it causes the program to
crash and a strange and cryptic message is printed for the user which they will hopefully report verbatim
to the coding team for debugging purposes.

Is that it? We just let it crash? Well, you don’t have to. You can deal with the exception since you
know now that it can happen sometimes. Let's talk vocabulary for a minute, though.

When a function causes an exception, we say it throws an exception. To handle an exception you
know might happen, you should try to catch it. (After all, you can't catch what you aren't expecting,
right? It'll just bounce off your head causing damage if it were hard enough.)

The code for this might look something like this:

string word;

bool repeat{true};

while (repeat)

{
repeat = false; // we're gonna succeed this time!
cout << "Please enter your word: ";
cin >> word;
cin.ignore(numeric_limits<streamsize>::max(), '\n');

try
{
cout << "\nThe 6th letter of your word is: '"
<< word.at(5) << "' . \n";
// You can put several functions in here that

(© Jason James @80 117 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.8. Standard Libraries Il

// all cause the same exception and just catch
// once at the end of the code if you want.
}
catch (out_of_range) // (out_of_range ex)
{
repeat = true;
cout << "\nYour word isn't long enough for our purposes.\n"
"Please try again with a longer word...\n";
//cout << "\nSpecifically, the function said: " << ex.what()

// << "\n';

// this is a bad idea:

//cout << "\nThe first letter of your word is:
// << word.at(0) << "'.\n";

// it might cause another exception from this catch block!
// then we can't catch it and it'll crash the program. . .

rn

* 1f your try has functions that cause multiple

* types of exceptions, you can have multiple catch
* blocks to follow it and catch each type

* separately

*/

As you can see, we use at to possibly generate an out_of_range exception inside a try block. This
is then caught in a catch block following the try. Had the catch named the exception it caught, we
could have used the what function on it to report that same cryptic message to the user that a crash
would have printed. But | like our message better — it is more appropriate to our application, after all.

Also note that you can list as many catch blocks as you need to process all possible exceptions that
might be thrown at you from the try block. What other functions could throw an exception? Let's
take a quick glance at cppreference.com and see:

Function Might throw

at out_of_range

assign length_error

insert length_error, out_of_range
erase out_of_range

replace | length_error, out_of_range
substr out_of_range

So many of the string class functions we've learned can throw exceptions at us. Should we try
to catch them all? Some would say yes, others no. Exception handling is a bulky bit of code. But it
would probably be well worth it to do so rather than face the crash report later. After all, it isn't like at
that we could just replace with well-bounded subscript operations.

Also note the comment at the end of the example catch block. As indicated, if you perform some
action in a catch block that might throw another exception — even the same kind as is being caught
by this block — you won't be able to catch it here and it will crash the program if no code after you
tried to catch it. So be extra careful what you do in a catching situation.

(© Jason James @80 118 of 361

https://cppreference.com

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

3.9 Even More Branching

While the if and its kin are quite general and powerful at branching to make decisions, we often desire
more elegance or optimization in our code. Therefore, we have two other forms of branching to study
here: switches and the 7: operator.

3.9.1 The switch Branch

The switch branching structure can make certain decision situations execute more efficiently and so is
a good idea to learn. It also helps with debugging and maintenance of code. Let's look at what those
certain situations are and how these benefits manifest.

3.9.1.1 Rules for switches

A switch can be used in place of a cascaded if under certain conditions. These conditions are:
e all tests are for equality (==)
e all tests involve a common expression (CE)
e all tests involve — other than the CE — constant or literal expressions

e all constant/literal expressions are unique (this is checked by the compiler and reported during
compilation)

o all values involved are of a 1D discrete type (char or integer and technically bool)

In addition, the equality conditions in the if form can be combined with logical or (| |) and there
can be a else clause at the end.

First let's look at the general structure of a switch. It starts with the switch keyword and uses two
other keywords: case and default. Let's take a look:

switch (CE)
{
case value:
{
// code for this value
} break;
case value: case value:
{
// code for these values
} break;
case value:
case value:
{
// code for these values
} break;
default:
{
// code for any other values
} break;

The common expression (CE) is listed once at the top of the switch inside parentheses. Then we
have a mandatory pair of curly braces around all the values the CE is expected to take on. Each value is
preceded by the keyword case and followed by a colon. Then we list the statements associated with this

(© Jason James @80 119 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics

3.9. Even More Branching

value or values and follow them with a break statement. This break is a necessary part of the switch's
cases and not to be avoided like when we talked of it with respect to loops earlier.

The default block is there to match any value of the CE not listed in a particular case value —
emulating an else at the end of a cascaded if. It is often listed last, but doesn't have to be. Some
programmers like to list it first to make sure all extra cases are handled.

Another myth about the default is that it alone needs no break. This is untrue. The rule is that
the /ast block in the switch doesn’'t need a break. If we list the default block first, it will need a break
to function correctly. We generally, of course, put a break on all blocks for consistency and just to make
sure nothing bad happens. After all, you never know when, during maintenance, another programmer
will add a set of case values to the end of the switch to handle something new and forget to add a
break to your old last block! Then your block will continue to execute through their block each time it
is chosen!

Finally, we emulate a || combo by listing out multiple cases one right after another. This can be
done on separate lines or across a single line as you like. The reason this works is that the computer
looks for the first case value that matches the value of the CE and just executes code until a break
occurs. The case values themselves don't have any executable content and so are blithely ignored in
this.

I've put curly braces on the statements for each case set, but these are only necessary if we want
to declare new variables inside the block. Also, some people would put the break inside the curly braces
instead of afterwards like | have here. | put it outside because | feel it is more a part of the switch
structure than of that case's code.

There are also a variety of ways to indent switches. Some folks will indent as I've done here. Others
will not indent the case keywords inside the mandatory curly braces. This violates our earlier style rule
to always indent inside a pair of curly braces, but since these braces are mandatory, some people feel it is
acceptable to not indent here. Also, some people will indent the break when not using the curly braces
on the case blocks — technically making them not blocks at all but just lists of statements. Others will
keep the break at the same level as the case keywords. We all seem to agree to indent the statements
inside the case whether we use curly braces on it or not.

Here are a few examples of such style variations:

switch (CE) switch (CE)
{ {

case value:
// code for this value
break;
case value: case value:
{
// code for these values
} break;
case value:
case value:

@ Jason Jmeﬁe @ @ alues

break;
default:

case value:

// code for this value
break;
case value: case value:
{

// code for these values
} break;
case value:
case value:

// code for these values
break;
default:

120 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics

3.9. Even More Branching

switch (CE) switch (CE)
{ {
case value: case value:
// code for this value // code for this value
break; break;
case value: case value: case value: case value:
// code for these values // code for these values
break; break;
case value: case value:
case value: case value:
// code for these values // code for these values

break; break;
default: default:
// code for any other values // code for any other values
break; break;
} }

switch (CE) switch (CE)

{ {

case value: case value:

{ {
// code for this value // code for this value
break; break;

} }

case value: case value: case value: case value:

{ {
// code for these values // code for these values
break; break;

} }

case value:
case value:

case value:
case value:

{ {
// code for these values // code for these values
break; break;

} }

default: default:

{ {
// code for any other values // code for any other values
break; break;

} }

} ¥

And, of course, our original example can be done without the 'extra’ indention.

As to the benefits, the matching of equal values can be done much more efficiently than the general
tests that the if structure supports and so a switch will run more quickly than an equivalent cascaded
if. Also, since the compiler checks that all case values are unique, we get a little help when you slip or
have a copy/paste incident causing duplicate values to be checked in separate branches.3! And finally, if
used with an enumeration, the compiler warns if any of the constants are not listed in a case indicating

a missed situation.

This sounds like a lot of stuff, but it turns out to happen a lot! Let's look at a few examples to get

the hang of it.

3.9.1.1.1 Menus Revisited

One of the primary places to use a switch is when processing the user's response to a menu. Look back

at our basic menu example:

choice = static_cast<char>(toupper (choice));

if (choice == '"1' || choice == 'J')
{
cout << "\nOption 1 -- JUNK -- Chosen!\n\n";
}
else if (choice == '2' || choice == 'S')

3l¥Yes, each case block is considered a branch within the switch structure. This is akin to how the whole cascaded if

was a branching structure and each if/else-if/else was a branch within it.

(© Jason James @80

121 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching
{
cout << "\nOption 2 -- STUFF -- Chosen!\n\n";
}
else if (choice == '3' || choice == 'Q' || choice == 'X')
{
done = true;
}
else
{
cout << "\n\aInvalid choice '" << choice << "'!!!\n\n"
"Please try to read more carefully next time...\n\n";
}

Here we have a 1D discrete type (char) being compared entirely with equality (==) and having or
combinations (| |) and an else at the end. Oh, and all the literal values are unique and being compared
to a common expression (choice that was uppercased). Perfect! This will make an excellent switch.

switch (toupper (choice))
{
case 'l1': case 'J':
{
cout << "\n\tChoice 1 -- JUNK —-- chosen!\n\n";
} break;
case '2': case 'S':
{
cout << "\n\tChoice 2 -- STUFF -- chosen!\n\n";
} break;
case '3': case 'Q': case 'X':
{
done = true;
} break;
default:
{
cout << "\n\aInvalid choice '" << choice << "'!!I\n\n"
"Please try to read more carefully next time...\n\n";
} break;
}

Note how the toupper is placed now inside the switch head. It also doesn't need the static_cast
any longer since we aren’t storing it into a char variable. Add to that convenience the improved speed
of the switch and the unique value checking, we have a winning combination: menus and switches!

3.9.1.1.2 Suffixes for Numbers

Putting a suffix on a number is a common application need. You don't always want to use cardinals
"number 1", "number 2", etc. Sometimes you want to use the ordinals: "1st”, "2nd"”, etc. How to
map a number to its suffix? Let’s explore the pattern to make sure we know what we want first:

Oth st 2nd 3rd 4th ©5th 6th 7th 8th 9th
10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th
30th 31st 32nd 33rd 34th 35th

(© Jason James @80 122 of 361

EY MG TR

Chapter 3. Decision Making

Exploring C++: The Adventure Begins
Programming Basics

3.9. Even More Branching

100th 101st 102nd 103rd 104th 105th
110th 111th 112th 113th 114th 115th
120th 121st 122nd 123rd 124th 125th

Notice how the 1, 2, and 3 slots are all special except during the tens. Those are always "th" just
like everyone else. So, we might think to code this as:

~

{

switch (number)

case 1:
suffix
break;

case 2:
suffix
break;

case 3:
suffix
break;

default:
suffix
break;

llstll .

”nd”;

llrdll ;

llthll ;

Here number is an integer and suffix is a string.

But this doesn’t take account of the twenties, thirties, hundreds, etc.
instance, 101th instead of 101st! We need to focus on what makes them similar and it seems to be the
ones digit. To extract just the ones digit, we use modulo, of course:

We'd end up saying, for

{

case 1:
suffix
break;

case 2:
suffix
break;

case 3:
suffix
break;

default:
suffix
break;

switch (number % 10)

llstll .

”nd”;

”rd”;

llthll ;

But now the teens are showing up special as well: 11st! The simple fix is to add cases to the switch
for the exceptions. But they have the same ones digits. It is their tens digits that differ! | guess we'll
have to nest the switch in an if to handle the exceptions:

(© Jason James @80

123 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching
if (number / 10 % 10 == 1)
{

suffix = "th";
}
else
{
switch (number % 10)
{
case 1:
suffix = "st";
break;
case 2:
suffix = "nd";
break;
case 3:
suffix = "rd";
break;
default:
suffix = "th";
break;
}
}

Here we've used both integer division and modulo to extract just the tens digit. | could have also
done number 7, 100 / 10, but this code seemed slimmer and is going to be slightly more efficient if the
compiler is paying attention. This is because the division by 10 is later followed by a modulo by 10. The
CPU calculates these two values together at once. So the smart compiler will just hold onto that second
value from the first calculation and not recalculate it all over again.

Still, it is lucky for us that all the teens are "th" and not just those three!

But this is a bit overkill. Since the exceptions are like all other numbers, we can use an initialization
to handle both their situation and the default:

suffix = "th";
if (number / 10 % 10 !'= 1)
{
switch (number % 10)
{
case 1:
suffix = "st";
break;
case 2:
suffix = "nd";
break;
case 3:
suffix = "rd";
break;
}
+
cout << "You are " << number << suffix << " in line.\n";

This does cause us to reset the suffix variable for the special cases, but it saves our time coding and
is usually considered worth it.

(© Jason James @80 124 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

3.9.1.1.3 Randomized Messages

Sometimes the patter from your program grows stale to a long-term user. It would be nice if your
responses were more varied. We can emulate that with randomization.

We'll select a few messages for a given part of the program and then pick one randomly:

switch (rand() % 4)
{
case O:
mesg = "That would be ";
break;
case 1:
mesg = "I believe that is ";
break;
case 2:
mesg = "When I was your age, that was ";
break;
case 3:
mesg = "\a&*x"*x& O &&%$ ";
break;

}

cout << mesg << answer << ".\n";

Sorry, | ran out of steam on that last one. But you get the idea. *smile* (answer would be whatever
answer we'd calculated to tell them in this program.)

3.9.1.2 Fallthrough

As we said earlier, a break is necessary to stop the switch from executing after a case block. If we
don’t have one, we will execute into the next block and so on until a break is found or we run off the
end of the switch.

Sometimes this can be done on purpose for good effect. For instance, if two branches need to perform
nearly identical actions, but one has a little more work before their overlap and nothing extra afterwards.
This is a little tricky to think about until you see it in action, so let's look at a couple of examples.

3.9.1.2.1 Days Until Now

Let's say we had the day, month, and year of a date and need to know how many days had elapsed in
that year up to and including that date. We could do it like this:

days_so_far = day;
for (short m = month - 1; m >= 1; --m)
{
switch (m)
{
case 11:
days_so_far += 30;
break;
case 10:
days_so_far += 31;
break;
case 9:
days_so_far += 30;

(© Jason James @80 125 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

break;
case 8:
days_so_far += 31;
break;
case 7:
days_so_far += 31;
break;
case 6:
days_so_far += 30;
break;
case 5:
days_so_far += 31;
break;
case 4:
days_so_far += 30;
break;
case 3:
days_so_far += 31;
break;
case 2:
days_so_far += 28;
break;
case 1:
days_so_far += 31;
break;
// no 0 case since it wouldn't do anything anyway
// (month-1==0 means we're in January so no whole
// months have passed...)

}
// check for leap year and after February

Here, all the variables not declared in the fragment are short integers. We start the month loop at
the month-1 because the initial setting of days_so_far to day handles the days that have passed during
this current month. Two notes:

e The += updates may throw out warnings on some compiler setups. This is because the C++
standard says short computations can be coerced into int instead and then this result will be 'too
big' to fit back into the short variable.

e We could have used our enumerations for MonthNums and MonthDays from section 2.3.3.2, but
we just used the literals for expedience. This isn't the best choice, but is sometimes done when a
deadline approaches. In the next revision we'll make sure to clean this up.

e We didn't need to line up the month numbers like that, but some programmers think it looks pretty.
Just thought I'd give it a showing for their sake. Maybe you'll like it, too.

You may wonder why | looped backwards through the months. That was just for fun. We could
have looped from 1 to the month - 1 instead and it would have worked just the same — addition is
commutative, after all. The same applies to the order of the cases within the switch — they could
have been ordered ascending instead of descending and all would have worked just fine.

But, this uses all the breaks and doesn’t demonstrate our point. Here is a version that takes
advantage of the fall-thru principle:

(© Jason James @80 126 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making

Programming Basics

3.9. Even More Branching

{

}

days_so_far = day;
switch (month - 1)

case November:

// previous month; this month is done

days_so_far = static_cast<short>(days_so_far

[[fallthroughl];
case October:

days_so_far = static_cast<short>(days_so_far

[[fallthroughl];
case September:

days_so_far = static_cast<short>(days_so_far

[[fallthroughl];
case August:

days_so_far = static_cast<short>(days_so_far

[[fallthroughl];
case July:

days_so_far = static_cast<short>(days_so_far

[[fallthroughl];
case June:

days_so_far = static_cast<short>(days_so_far

[[fallthroughl];
case May:

days_so_far = static_cast<short>(days_so_far

[[fallthroughl];
case April:

Nov_days) ;

Oct_days) ;

Sep_days) ;

Aug_days) ;

Jul_days);

Jun_days) ;

May_days) ;

days_so_far = static_cast<short>(days_so_far + Apr_days);
[[fallthroughl];

case March:
days_so_far = static_cast<short>(days_so_far + Mar_days);
[[fallthroughl];

case February:
days_so_far = static_cast<short>(days_so_far + Feb_days);
[[fallthroughl];

case January:
days_so_far = static_cast<short>(days_so_far + Jan_days);
[[fallthroughl];

// no 0 case since it wouldn't do anything anyway

// (month - 1 == 0 means we're in January so no whole

// months have passed...)

// check for leap year and after February

In this revision we've used the enumerations and put in the suggested static_casts. We've also
changed out our breaks for a new notation: [[fallthrough]]. This indicates to both the compiler
and other programmers that we are purposefully leaving out the break and letting the code fall through
to the next case block. This isn't absolutely necessary, but it is a good idea.

How does this work without a loop? Well, when the prior month — the one that is complete — is
found in a case value, we add on its days. Then we fall-thru to the month that preceded it and so on
until we reach the end of the switch. This continues to add on the days of all those preceding months
down through January. Since it automatically adds up all the prior months, we don’t need to loop.

Clearly, here, the order of the case values is extremely important! If you decide to change them up
to ascending you will get the number of days left in the year plus the previous month's days and the

(© Jason James @80

127 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

current month’s days and less the days left this month. It'd be a mess!

Lastly, the [[fallthrough]] mark on the January branch didn't really need to be there, but | put
it there for consistency and completeness.

3.9.1.2.2 Roman Numbers

Another thing that comes up from time to time (writing about the Super Bowl, enumerating list items,
printing a fancy clock, pages for the before text material in a book, etc.) is converting normal Arabic
numbers into Roman form. This can be done in a pretty simple way and can be more elegantly done
using a switch with fall through.

The basic idea is to convert each digit of the Arabic number separately and then concatenate them
together in a string of Roman digits. We'll not go into the theory here, but you can read all about it
on the web at any number of fine websites.

Let’s take just the ones digit for an example.

The pattern for the ones digit conversion looks like

this:

Here the different colors represent different
parts of the pattern. First off, 4 and 9 are dif-
ferent from everyone else and so should get their
own branches to deal with it. Second, all num- IV X
bers from 5-8 start with a V. We should take ad-
vantage of this commonality to optimize our time
spent coding. Finally, all numbers 1-3 and 6-8 end
in some number of Is. For 1-3, this number of Is is exactly the number itself. For 6-8, it is 1-3 Is. There
are two ways to map 6-8 to 1-3 — subtraction or modulo.

S S <<

Let's look at what we've got so far:

switch (ones)
{
case 4: case 9:
roman += 'I';
if (ones == 4)

{

roman += 'V';
+
else
{

roman += 'X';
}
break;

case 1: case 2: case 3:
for (short i = 1; i <= ones; ++i)

{

roman += 'I';
+
break;

case 5: case 6: case 7: case 8:
roman += 'V';
for (short i = 1; i <= ones % 5; ++i)
{

roman += 'I';

(© Jason James @80 128 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching
}
break;
// no need for a 0 --- nothing added for this situation
}

First, why are 4 and 9 combined? | thought they had nothing in common? Well, upon further
inspection, they both started with an | — kinda like all the 5-8 start with a V, so | thought I'd take
advantage of that fact to simplify the structure a little.

Second, we is 5 okay running through that for loop? That's because 5 % 5 is 0 and the for loop
just doesn’t run then. (1 is immediately not <= 0.)

Also, we now see the overlapping branches! So let's combine them:

switch (ones)
{
case 4: case 9:
roman += 'I';
if (ones == 4)
{

roman += 'V';

roman += 'X';
}
break;
case 5: case 6: case 7: case 8:
roman += 'V';
[[fallthroughl];
case 1: case 2: case 3:
for (short i = 1; i <= ones % 5; ++i)
{
roman += 'I';
}
break;
// no need for a 0 --- nothing added for this situation

Here we do the for loop

only once and use modulo to Roman Tens, Hundreds, & Thousands
cap it so that we can use

the same loop without worry.
We could have also either
modded by 5 or subtracted
5 before falling through and
left the loop bound at ones. XL XC CD CM
That would make it slightly
more efficient. Maybe on the
next version.

[i
O O g o

And what about the other digits? Well, I'll leave those to you, but suffice it to say that the pattern
— for us — stops at 3999 because the Roman symbol for 5000 is V and we can’t exactly do that on
the console in a string, now can we? But, as far as it goes, the other digits are very similar to the ones
digit. In fact, we could just copy/paste the ones code and change the digit variable and the letters we

(© Jason James @80 129 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

are appending to the string. The only one that's at all different is the thousands and it is just shorter.
Since we'll limit the number to 3999, we just won't execute the 4-9 code for that digit. But more on
that later. ..

Actually, upon further reflection, we could probably use a generic digit variable instead of four specific
ones and put the above switch in a while or for loop. This avoids the problems with copying and
pasting and gives us a chance to use strings and switches even more! After all, we'd need to change
which string we were taking digits out of each round. We just need to make sure we are concatenating
the digits in the right order to the overall Roman string. I'll leave this mostly to you, but I'll give you
this hint. You'll need a switch like this one to change the string in use each time around the loop:

switch (divisor)
{
case 1000:
current_place
break;
case 100:

THOUSANDS;

current_place = HUNDREDS;
break;

case 10:
current_place = TENS;
break;

case 1:
current_place = ONES;

break;

Good luck and have fun!

3.9.2 The ?: Operator

I've been looking at the 4/9 code above and it's irritating me. That's a big if-else for such a tiny
assignment choice. Maybe we can do better. Let's look at a new operator that makes small decisions. It
has many names: selection, conditional, ternary, to name a few. But many just call it the 7: operator3?
because those are its symbolic components. They are not, however, typed in side-by-side like the insertion,
extraction, comparison, and shorthand math operators with multiple symbols. They are separated by a
value to act on.

But perhaps I'm getting ahead of myself. Let's look at a typical if-else that we'd be able to replace
with this new operator:

if (condition)
{

action valuel;
}
else
{

action value2;
}

Here we have a common action taking place in both branches and a different value being acted upon
in each branch. It is all controlled by the value of the condition — true or false. true leads to valuel
being used in the action and false uses value?2 in the action.

32Read as " question-colon operator” .

(© Jason James @80 130 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

To replace this structure with a ternary operation, we'd code this:

action (condition 7 valuel : value2);

Now that you see the 7: operator in action, you hopefully get what | was saying before: the 7 part
and the : part are separate from one another. They are separated by the value to use when the test is
true. Then the : is followed by the value to use when the test is false. The test itself resides before
the 7 symbol.

The parentheses around the 7: may not be needed depending on the action and the context of the
ternary’s placement.

Are there any other limitations? Yes. The two values must be of exactly the same data type. You
can't even mix things as similar as double and short together, typically.

3.9.2.1 Two-way Examples

Let's look at some examples to get the feel of it. ..

3.9.2.1.1 Roman Numbers Revisited

So we were concerned with the if structure in the 4/9 case of our Roman number switch above
(section 3.9.1.2.2):

if (ones == 4)
{

roman += 'V';
}
else
{

roman += 'X';
}

To transform this into a selection operation, we just pull out the roman += action and make the
decision of 'V' versus 'X' based on whether the ones digit is a 4 or not:

roman += ones == 4 7 'V' : 'X';

This would take us as the programmers ridiculously less time to type and takes the compiler just as
much time to compile — maybe less? — and runs just as efficiently on the user's end. It's a win-win-win!

Note that here the parentheses are not needed as the == and the += take place with the right
precedence order. That is, == always evaluates before +=.

But | took the advice above and used a string to store the letters so my code looked like this:

if (ones == 4)
{

roman += current_place[1];
}
else
{

roman += current_place[2];
}

(© Jason James @80 131 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

Am | out of luck? No! Of course not. You can do this one in two different ways. The first is to do
like we did above and put the subscript operation inside the conditional operation:

roman += ones == 4 7 current_place[l] : current_place[2];

Or, you could just decide, based on the ones value, to use either a 1 or a 2 within the subscript:

roman += current_placelones == 4 7 1 : 2];

Saving even more keystrokes and time! Try to ferret out the minimum change you can do in such
situations. Once you get used to the transformation, you'll do it automatically instead of after the fact.

But just to help, let's review a few more. ..

3.9.2.1.2 Plural Agreement

Making a noun plural or singular depending on a variable's value is, to some of us, pretty important.
It shows that the programmer took at least a modicum of time making their interface nice and clean
of typos. | can't even remember all the times I've yelled at an app for printing the likes of "1 file(s)
downloaded.” or "1 files downloaded.”. At least the former programmer made it possibly work. The
second one didn't even concern themselves with it.

So how hard is this task? Not hard at all! In fact, let's go straight to the ternary form:

cout << count << " " << (count == 1 ? "file" : "files")
<< " downloaded.\n";

Here the parentheses are needed as == and << would not get along properly. It would try to print the
value of count again and then compare cout to 1 in the ?: operation!

Note: In English, 0 is plural, too. Weird, no?

3.9.2.1.3 Gross Pay

What about gross pay with overtime involved? Yep, that's a 7:, too:

gross = hours > 40 7 1.5 * rate * hours : rate * hours;

or, trimming it up with a little factoring — but maybe confusing folks:

gross = rate * (hours > 40 7 1.5 * hours : hours);

It might confuse others because it looks like the 1.5 is just times the user's hours worked instead of
the rate as well. Also, the parentheses are needed here again due to the tug-of-war between * and >
over the hours variable.

3.9.2.1.4 A Counterexample

Note that many students of programming feel that this is a perfect tool to assign a bool variable a value:

bool_var = condition 7 true : false;

But this is just wasteful! That condition will be true when the bool_var is set to true and false
when the bool_var is set to false. Why add an extra layer of processing? Just store the condition
result in the bool_var:

(© Jason James @80 132 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

bool_var = condition;

What if you want to store the opposite? Then apply DeMorgan’s Laws to the condition (if necessary):

bool_var = ! condition;

3.9.2.2 Ternary with Identity

The ternary operator normally requires two values to act upon. This can be emulated under certain
circumstances.

For instance, let's revisit plural agreement for a second. It can be coded more effectively than a whole
if-else as a single if and no else:

cout << count << " file'";
if (count !'= 1)
{
cout << 's';
}

cout << " downloaded.\n";

Can we now not use a 7: to shrink this code? We can, but it takes some tricky thinking. First, we
consider what is in the missing else branch. Were we to code it up, we would display nothing there:

cout << count << " file'";

if (count != 1)
{

cout << 's';
}
else
{

cout << "',
}

cout << " downloaded.\n";

Now it is two-way, but the types of the values are different. Luckily it is easy enough to change a
char literal to a string literal:

cout << count << " file";

if (count != 1)
{
cout << '"g"
}
else
{
cout << " ;
}

cout << " downloaded.\n";

You thought | was going to do the anonymous construction trick, didn't you? Well, always take the
shortest path to your goal!

So now we can make this a ternary operation again:

(© Jason James @80 133 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

cout << count << " file" << (count !=1 7 "s" : "")
<< " downloaded.\n";

We can do the same thing with the gross pay calculation from above:

gross = rate * hours * (hours > 40 7 1.5 : 1.0);

Here we are multiplying by 1 in the alternative branch.

What both of these examples have in common is that the value in the alternative branch is the
identity value for the action in question. You've used identities before but maybe not called them that.
An identity is a value that, when acted on usually with another value gives a result that is the other value
unchanged. For instance, 0 plus any other number is that other number. 1 times any other number is
the other number.

Here we have that the empty string printed on any output stream — like cout here — doesn't
change the stream at all. Are there any other identities for C++ actions? So glad you asked! Here's a
handy table of them:

Action Identity

+ O’ nn

* 1

|l false

&& true

<< nn

pow 1

= the variable on the left

Note that addition and concatenation share an operator and so I've put their identities on the same row
together.

Any operator with an identity value can be turned into a selection operation this way.

3.9.2.3 Greater Than Two-Way Selection

That's right, as the title of this section implies, you can actually do not just two-way and one-way
(with identity!) branches in 7: form, you can even make three-way and higher branches into conditional
operations.

How can this be so? Well, recall our original exploration of the cascaded if (section 3.5.2). The if
in an else-if was originally nested inside a plain else. Therefore, we can use nesting with operators to
achieve three-way or higher 7: operations.

Let's take this as a simple example:

cout << "The value " << number << " is ";
if (number > 0)
{
cout << "positive";
}
else if (number < 0)
{
cout << '"negative";
}
else // number == 0 necessarily
{

(© Jason James @80 134 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.9. Even More Branching

cout << '"zero";

}

cout << ".\n";

We can achieve this by realizing the nesting, again:

cout << "The value " << number << " is ";
if (number > 0)
{

cout << "positive";
}
else
{

if (number < 0)

{

cout << '"negative";
}
else // number == 0 necessarily

{

cout << "zero";

}

cout << ".\n";

And so it becomes:

cout << "The value " << number << " is "
<< (number > 0 7 "positive" : (number < O 7 "negative" : "zero"))
<< " \n";

The first thing to note is that the 7: operation has the third lowest precedence of any C++ operator.
That means that it doesn't conflict with anything except two very slow operations.3® This means for us
that we don't need the inner parentheses on this:

cout << "The value " << number << " is "
<< (number > 0 ? "positive" : number < 0 7 "negative" : "zero")
<L ”.\Il”;

While that helps, this is still rather cumbersome and is getting rather long for a display in a presentation
or the like. We'd like to wrap it, but how? There are several popular styles and people come up with
variations all the time:

cout << "The value " << number << " isg " cout << "The value " << number << " is "
<< (number > 0 7 "positive" << (number > 0 ? "positive" :
: number < 0 7 "negative" number < 0 ? "negative" : '"zero")
: "zero") < W \mle
<< " \n";

33There's actually more to it than this, but a full discussion of precedence and such is beyond the scope of this work.

(© Jason James @80 135 of 361

Exploring C++: The Adventure Begins

Chapter 3. Decision Making

Programming Basics

3.9. Even More Branching

cout << "The value " << number << " is "

<< (number > 0 ? "positive" :
number < 0 7 "negative" :

" << number << " isg "

<< (number > 0 7 "positive"

cout << "The value

: number < 0 7 "negative"

"zero") : "zero")

<< " \n"; << " \n";

And that's just to show a few of them! Play around with style variations from program to program
but just not within the same program. Do a whole program in a single set of styles. If you don’t like the
effect, try it differently the next program.

One last thing: make sure you don't nest ternary operations too deeply as they become unseemly and
unwieldy rather quickly. 1'd recommend no more than 5 levels deep (that's the equivalent of 3 else-ifs
in a cascaded structure).

3.9.3 Factoring a Branching Structure

Factoring is an important skill and has many facets. We'll start with factoring a branching structure
to make it less redundant. We can see a good example of this just above in the number sign report
fragment:

cout << "The value " << number << " is ";
if (number > 0)
{
cout << "positive";
}
else if (number < O)
{
cout << '"negative";
}
else // number == 0 necessarily
{
cout << '"zero";
}
cout << ".\n";

This code is well-factored already. What would be a redundant version of it? Why should it be this

way instead? Here, let’s look:

if (number > 0)
{
cout << "The value " << number << " is "
<< "positive" << ".\n";
}
else if (number < 0)
{
cout << "The value " << number << " is "
<< '"megative" << ".\n";
}
else // number == 0 necessarily
{
cout << "The value " << number << " is "
<< "zero" << ".\n";
}

Note that the common prefix on the output is repeated in every branch and even the period and

(© Jason James @80 136 of 361

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.10. Even More Looping

newline are repeated in every branch. Since these appear at the beginning of every branch and the end
of every branch respectively, we can factor them in that direction. This resembles doing factorization in
algebra and thus the name:

a-x-b+a-y-b=a-(x+y)-b

Sadly, we don’t have an inverse operation like distributivity. But that would just make the code bulkier
So. ..

3.9.4 Summing Up Branching

So, with so many choices, how do you decide which branching structure to use in a particular situation?
For ease of programming small situations, the 7: is awesome! Just make sure you can really use it: same
action and same type of value in all branches.

For those situations that you can use them, the switch can't be beat. But it does have quite a few
restrictions on its use so be sure they are all covered in your problem. (The list is in section 3.9.1.)

And an if? It is applicable at any time. Even if a switch or 7: would be better, the if will work.
But try to use the other two when they are appropriate as it will help in so many ways!

3.10 Even More Looping

Believe it or not, there are also two more loop forms. These are do loops and range-based for loops.
Let's look at each with examples.

3.10.1 do Loops

Let's begin with a flowchart. The do loop executes as shown in the

flowchart below. l
The body is executed at least once as it happens before the condition
is ever tested. Once tested, the condition may send the loop back true

through the body or out and on with the next bit of the program —
one never knows! w

The odd and somewhat worrisome thing about the do loop is that false
we don’'t know without analyzing a particular piece of code where the
initialization and update phases of the loop are! The initialization might
be before the do loop starts or inside the body. If it is inside the body,
it might be the same line as the update. (A priming loop for sure! See
section 3.6.1.2 for more on this.)

One particularly good place to use a do loop is for menus. After all, you have to print the menu, read
the user's choice, and decide if it was to quit at least once, right? So here, then, is our final version of
the menu example:

char choice;

bool done{false};

do

{

cout << "\t\tMain Menu\n\n"

"1) do Junk\n"
"2) do Stuff\n"
"3) Quit\n\n"

(© Jason James @80 137 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.10. Even More Looping
"Choice: ";
cin >> choice;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
switch (toupper(choice))
{
case '1l': case 'J':
{
cout << "\n\tChoice 1 -- JUNK -- chosen'\n\n";
} break;
case '2': case 'S':
{
cout << "\n\tChoice 2 —-- STUFF -- chosen!\n\n";
} break;
case '3': case 'Q': case 'X':
{
done = true;
} break;
default:
{
cout << "\n\aInvalid choice '" << choice << "'!!I\n\n"
"Please try to read more carefully next time...\n\n";
} break;
}
} while (! done);

This will make the karma police stay off your back for forcing all those while loops to go around
once earlier. *chuckle*

3.10.2 Range-based for Loops

Range-based for loops at first seem of limited usefulness as they currently only apply to strings. But
later (chapter 6) we'll see another type of container of lots of things that we can use them with as well.

So what is a range-based for loop and why is it like a standard for loop? Well, it looks like this:

for (char ch : str)

{
// do something with ch

In this form, the loop will automatically visit every character in the string str and copy it into the
char ch. Then you can do anything you want inside the loop with ch and it won't affect the characters
in str at all.

We could use it, for instance, to print an all uppercase version of a string for a title on a table or
chart we're printing. Let’'s take a look:

cout << string((80 - str.length()) / 2,' ');
for (char ch : str)
{

cout << static_cast<char>(toupper(ch));

(© Jason James @80 138 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 3. Decision Making Programming Basics 3.11. Wrap Up

cout << '\n';

| went ahead and centered it on the line to make it look even nicer.

The two caveats with these loops are that you no longer know the position of the character within
the string and you can’'t do anything even slightly different with any single value within the string.

Don’t worry, these loops will become more useful in later chapters as we learn more tools and places
to apply them.

3.10.3 Summing Up Looping

Let's start with range-based for loops. They are only used to walk through the elements in a string and
perform the exact same action to each element. Next come standard for loops as they are the easiest
to identify: use them when you know exactly how many times to repeat. do loops are next easiest: when
you don’t know how many times to repeat, but you know it must happen at least once. Lastly, there are
while loops which can handle any repetition situation.

3.11 Wrap Up

So we have lots of ways to control decision making in a program. These range from the powerful and
general if and while down to the very specific 7: and range-based for. Using the right combination
of tools for the job is the art of it.

(© Jason James @80 139 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 3. Decision Making Programming Basics 3.11. Wrap Up

(© Jason James @80 140 of 361

EY MG TR

Chapter 4

Functions

4.1 When? Who? Where? Why?
What? How? 141
4.1.1 Why Functions? 141

4.1.2 How Do We Use Func-
tions? 142

4.1.3 Where Do Functions Go
in the Source Code? . . . 143

4.1.4 When Should We Code
Functions? 144

4.1.5 Who Are These Function
People? 144

416 How Do We Design
Functions? 145
4.2 Examples 147
4.2.1 Input an Uppercase Letter 147

422 Removing Leading
Whitespace 147
4.2.3 Printing a Program Title . 147
4.2.4 Centering Helpers . 148

4.3
4.4

4.5

4.6

4.7

4.8

425 Displaying a Monetary
Value
Scope
Arguments L.
4.4.1 Passing Arguments
4.4.2 Function Overloading
4.4.3 Default Arguments

Tools for Better Functions

451 [Re]Factoring
45.2 Separate Compilation

4.5.3 inline Functions.
454 Help Debugging

Advanced Techniques
4.6.1 template Function Basics
4.6.2 tuple returns
Warnings: What Not to Do

4.7.1 Multiple returns
4.7.2 Unintentional Recursion .
WrapUp

So far all of our programs have been housed in the main function and if we wanted to reuse code
from a prior program, we would have to copy/paste it and make modifications so it would work in the
new program — variable names, etc. This is a tedious and error-prone enterprise at best. And it leads

to some hideously long main programs!

In this chapter we'll look into a flow control tool that can package up a set of code for easy reuse

without constant editing and even cross-program reuse. This tool is the function.

4.1 When? Who? Where? Why? What? How?

In this section we'll answer these questions as they pertain to functions.

4.1.1 Why Functions?

Easy code reuse is our primary concern when writing functions.
primary one is known as encapsulation. This means basically that the code that’s in the function stays
in the function — no one need know what goes on in there!

141

But it has other benefits, too. The

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics4.1. When? Who? Where? Why? What? How?

This is also called the Black Box Principle — like those devices in airplanes. Again, it elicits the image
of an opaque box that can't be seen into. But trick this box out with an input hopper and an output
spigot like a typical function machine and you have something speciall®

In addition to these monumental benefits, there are other smaller ones:

e Functions allow for easier testing and debugging.

e Functions ease the update and maintenance phases of program development.
e Functions can clarify the code that calls on them as well as simplify it greatly.

e Functions play an intricate role in the Top-Down Design process (aka Stepwise Refinement).

4.1.2 How Do We Use Functions?

There are three parts to a function that make it complete/whole:

e Declaration or Prototype of a Function
The declaration tells what information the function needs to begin its work. This information is
known as the formal arguments.

[head ;

The head has a return type telling what type of information the function’'s work will result in, a
name by which the function will be called later on, and a parenthesized argument list. (The term
argument is more often used than function parameter or input.) In the argument list, each argu-
ment is specified by at least a data type, but ideally also a name specifying this argument'’s role
in helping the function solve the problem it attempts to solve. If the function needs more than
one argument, they are comma separated much like the names of multiple variables in a variable
declaration. Only here each argument needs its own type — even if it is the same as the previous
argument'’s type.

Some examples:

double pow(double base, double exponent);

double sqrt(double x);

int rand(void);

void srand(unsigned seed);

void ignore(void);

void ignore(streamsize max_count, char terminator);

\.

The semi-colon ends the prototype/declaration just like any C4++ statement. This declaration tells
the compiler and the prospective caller? what the function needs to begin its work, what its purpose
is, and what value — if any — it will return to the caller.

Note that the last three examples return nothing. They have a void return type to signify this.
The void in rand’s parentheses isn't necessary, but makes it more clear that the function doesn't
need any information to start its work.

e Call to a Function
The call to a function makes it execute. The call also provides the actual arguments the caller wants
the function to work with on this particular call. Another call may provide different arguments. For
instance, we might call pow with radius and 2 one time — for an area of a circle — and with
side and 3 another — for a volume of a cube. pow will call these base and exponent each time

INote that that was two links side-by-side.
2Programmer calling/using the function.

(© Jason James @80 142 of 361

https://en.wikipedia.org/wiki/Function_(mathematics)
https://mathinsight.org/function_machine

Chapter 4. Functions

Exploring C++: The Adventure Begins

regardless of what variable or value was passed in actual fact. That's why the arguments listed in
the declaration are known as the formal arguments and those in the call the actual arguments —
they are necessarily different. (The term 'formal’ may be thought of as the name your parents’
friends call you by when you are at a gathering. The actual argument is less formal and may not
be stored under a particular name at all.)

Some examples:

dl = pow(xl - %2, 2.0);

cout << sqrt(dl + d2);
srand(time(nullptr));

r = rand() % 6 + 1;

if (isspace(cin.peek()))
{

}

cout << str.length();
cin.ignore();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
getline(cin, str);
getline(cin, str, '7');

As we see, some actual arguments are variables, some are constants, and some are literals. Some
are even calculation (expression) results! Among those are the results of other function calls!
There are even empty argument lists when the function has a void or empty formal argument list.
Further, the result of the function is being used as appropriate or usual. If a use out of the ordinary
were attempted, the compiler would stop that, too.

Definition of a Function

int main (void) // head -- must match prototype exactly!
{ /7N
// stuff /7
// +-—— body
return 0; /7
} /77

A function definition places the head of the function — exactly like in the prototype — atop a
function body. As usual, a body here is a pair of curly braces with a list of semi-colon terminated
statements inside. The last statement in a function should be its return statement. The expres-
sion on this statement with the keyword return should match in type to the return type listed in
the function's head. If the return type is void, an empty expression can be used:

[return;

4.1.3 Where Do Functions Go in the Source Code?

Well, we actually need to know where each of the functions’ three parts go relative to the rest of the
source code. Here's the general plan:

(© Jason James @80

143 of 361

Programming Basics 4.1. When? Who? Where? Why? What? How?

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics4.1. When? Who? Where? Why? What? How?

#include <libs>

using directive
PROTOTYPES

main definition ——————---- \._CALLS
DEFINITIONS -—————- /

A function may be called from any other function definition. That is, a function should not be called
from inside its own definition nor from any of the definitions of functions it calls. When this happens we
call it recursion — because the function will re-occur. It is a tricky process to control and we will learn
more about it in a following course.

4.1.4 When Should We Code Functions?

There are several occasions that call for writing a function. These include:

e Code is more cluttery than meaningful.
If the code you've found looks like a right mess and you feel it should be gutted and thrown asunder
even though it is working just fine, perhaps you should hide it in a function. The function provides
a black box, after all, and we wouldn’t be able to see any of this mess from the call site.

e Code seems general or reusable.
You'll get better at this one as you program more and more. For now look to the tips in this book
and those of your teacher as to what is going to be reusable in the future.

e Code is obviously repeated with only data values, variables, constants, subexpressions, etc. being
changed from place to place (the code and types are the same).
This one is tricky at first, but you get better as you practice, obviously. If you were good at those
'spot the differences’ puzzles in children’s magazines and restaurant place-mats, you'll probably be
good at this. An automated difference checking tool can be a lifesaver here. Ask your teacher if
there are any installed at your school.

e The more data values you can 'parameterize’, the more likely you'll be able to reuse your function.
Here, parameterize means to make into a parameter. We don’t have a verb "argumentize’, oddly
enough. And it is true, the more of those differences you identified in the last bullet you can make
into function arguments, the more likely it is that someone can call your function in their situation.

4.1.5 Who Are These Function People?

There are actually many people involved in a typical program development cycle. There are programmers
— each of whom write their own parts of the program. There are testers who run the resulting program
against sets of test data meant to make sure it works under normal and extreme conditions. There are
optimizers who take proven code and tweak it to make it run just a little faster here and there.

But here in an introductory programming class, you are likely to play all of these roles yourself. Well,
except optimizer. We don't do too much of that at this level. You've probably already been an application
programmer and tester/end user, for instance.

Now, with the advent of functions in your programs, you'll play two more roles: function caller and
function programmer. That's right: the programmer who writes the function isn't necessarily the one
who calls it, too. Remember that programming is a team effort! After the initial design meeting(s),
programmers go their separate ways and work on their individual parts. They'll call their own functions
in a test harness or driver, but not in the actual application code. That'll be done by someone else who
was writing that part of the program.

Just try to keep all of it clear in your head. When you are writing the function, you know all about
it — its ins and outs and how it does its job. When you are calling the function, you only know the ins
and outs and an idea of its purpose. You don't know how it does its job. And you shouldn’t! Do you

(© Jason James @80 144 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics4.1. When? Who? Where? Why? What? How?

want to know how pow does its job? It works for positive, negative, zero, and decimal exponents, after
all. That's a broad job description. It is quite complicated and not for the faint-hearted. I'm pretty sure
it involves calculus! So keep to yourself and just call the darn function.

4.1.6 How Do We Design Functions?

There are two main ways to design functions. We can start from scratch or we can use existing code we
think is either repeated or reusable. Let’s start from scratch first and we'll look at taking out existing
code into a function in a later section (4.5.1).

Let’s design a function for rounding a value to a nearest multiple. Let's further assume that our C++
library implementation is missing the round function — just to make it interesting. One of the basic
formulas, you'll remember, is:

floor(value / multiple + 0.5) * multiple

See section 2.6.2.3 for more on how this works.

How do we build a function for this code? We analyze it for the basic ins and outs first. Here we
find:

floor(value / multiple + 0.5) * multiple
// known IN IN known IN

That is, we know the floor function and it is always adding 0.5. However, the value and multiple
need to be supplied by the caller for us to work with — what value do they want to round and to what
nearest multiple do they wish to round.

Next we decide on the types of the inputs. Here they will both be double in case they want to round
to the nearest 0.25 or the like. Thus our argument list is:

(double value, double multiple)

| just put the value first because it seemed the most important input. The order doesn't really matter
as long as the caller knows what each argument means with respect to the task being solved.

Now we decide the return type. Looking through our formula and our argument types, we see that
floor always returns a double and that times a double would still be a double. Thus our return type
will be double.

Next we pick a name for the function. We want this to be as clear as possible without going overboard.
There will also be comments on the prototype to help explain the function's purpose. Here I'm going to
go with round_nearest. This is better than just plain round without being too wordy. Our function
head now looks like this:

double round_nearest(double value, double multiple)

Next we put the task code into a function body and decide if there are any local variables necessary
to help our work. Here we have just the formula to calculate so no helper variables are needed. This
gives us:

return floor(value / multiple + .5) * multiple;

(© Jason James @80 145 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics4.1. When? Who? Where? Why? What? How?

Now we put the head on top of the function body below the main and copy it to the top of the source
file — between the using and the start of main — and add a semi-colon.

Finally to the comments. Remember that the prototype comments should discuss at least purpose,
inputs, and output. Comments at the definition can expand on this minimum with discussion of code
details.

Thus our prototype looks like this:

// Function to round caller's value to the nearest integer
// (or whatever multiple they desire —-- see multiple

// argument) .

//

// NOTE: The rounding position doesn't have to be a power
// of 10, it can be a multiple of 5 or 2.5 or 0.43 or
// “anything~!

double round_nearest(double value, double multiple);

And our definition can look like this:

// Function to round caller's value to the nearest integer
// (or whatever multiple they desire -- see multiple
// argument) .

Vs

// NOTE: The rounding position doesn't have to be a power
// of 10, it can be a multiple of 5 or 2.5 or 0.43 or
// “anything~!

//

// multiple is used to pre-scale the value to the ones

// position. Then a .5 is added to translate (shift) the
// floor function over to align with the traditional round
// to the nearest function. Finally the multiple argument
// is used again to post-scale the result from the ones
// position to the original.

double round_nearest(double value, double multiple)

{

return floor(value / multiple + 0.5) * multiple;

What about calls? Well, that’s up to the caller. *grin* We're just talking design and implementation
here.

But, just to sum up, the process is:
1) Have the code ready that performs the task.
2) Decide what needs to be given by the caller and what is already known.
3) Determine the return type of the function.
4) Pick a name for the function.
5) Put the task code into a function body and plan out any local variables.
6) Copy the head to both the body and the top of the code with a semi-colon.

7) Add comments to both the prototype and the definition.

(© Jason James @80 146 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.2. Examples

4.2 Examples
Before we move on to more details, let's analyze a few more functions to see how it looks.

4.2.1 Input an Uppercase Letter

One repeated task we've done is read in a char and change it to uppercase. We also always ignore the
rest of the input line if any. This task code would look like this:

char get_up_char(void)

{
char ch;
cin >> ch;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
return static_cast<char>(toupper(ch));

}

Here we've got the base code which needs to read in a char. Many beginning programmers will
assume this is also an input to the function and list it as an argument. But it isn't something that is
known to the caller beforehand! It is really part of our result. Thus we make it a local variable.

The only other detail here is the static_cast. This is just to suppress possible warnings from
persnickety compilers about the integer ASCII code versus the return type issue. (Darn those old C
programmers!)

I'll leave the comments to the interested reader... *grin*

4.2.2 Removing Leading Whitespace

Our next function is more clutter than meaning as well as being a reusable tool. It is the while loop we
used to remove whitespace that might precede a newline This function looks like so:

char peek_ahead(void)
{

while (cin.peek() '= '\n' &&

isspace(cin.peek()))
{
cin.ignore();

¥

return static_cast<char>(cin.peek());
}

Once again, no char is necessary as input. We use peek to look at each upcoming char from the
input. | decided to return the last peeked character as a bonus result. Otherwise we would have had a
void return type and had a different name like remove_space_to_newline or some such monstrosity.

4.2.3 Printing a Program Title

This function will center a program'’s title along with welcome text:

void welcome(string prog_title)

{
const string welcome = "Welcome to the " + prog_title + " Program!";
cout << string((80 - welcome.length()) / 2, ' ') << welcome << "\n\n";

(© Jason James @80 147 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.2. Examples

return;

Here I've made a local string variable to help center the message.

We also finally have a void return to demonstrate that not all tasks result in a value. Here our task is
to display on the screen. We call such results side effects because they happen to the side of the normal
flow of information between the caller and the function.

4.2.4 Centering Helpers

Speaking of centering, that 80-.../2 stuff gets old, doesn't it? Let's make a helper function to make
that padding for us:

string center_left_pad(string to_center, streamsize width, char pad)

{
return string((width - to_center.length()) / 2, pad);

Here we need no local helper variable. We do need several pieces of information to make this function
as reusable as possible. We take in the width in which we are centering and the char to pad with.
Taking these extra parameters helps the caller configure each call to their current needs.

We could have alternatively queried the width and fill of cout, but this way we can use it even
when the caller intends to display on a graphical interface or to a file or network connection. Always plan
for the future!

Then the welcome function above could call it like this:

void welcome(string prog_title)
{
prog_title = "Welcome to the " + prog_title + " Program!";
cout << center_left_pad(prog_title, 80, ' ') << prog_title
<< "\n\n";
return;
}

In addition to using the center_left_pad function here, I've changed out the local variable for
changing the parameter! This is not always the best decision, but it serves a purpose. It shows that
changing the argument won't change the caller’s original value (their actual argument). However, it uses
the name prog_title in an unclear way and is likely not worth the slight speed and memory advantage.

But that’s not all! We can also make a helper to 'calculate’ that centering'’s right padding:

string center_right_pad(string to_center, streamsize width, char pad)
{

string: :size_type padding = width - to_center.length();

return string(padding - padding / 2, pad);

The calculation is a bit different for the right side because of odd-length strings. We generally err
to putting that extra padding character on the right side rather than the left. The integer division by 2
here will truncate the 0.5 and leave the left side with one space less on odd-length values of to_center.
Then subtracting what center_left_pad calculated as the length of pad from the needed padding of
both sides, we get our right-side padding.

(© Jason James @80 148 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.2. Examples

When would the caller need this? Well, if they were centering a column of a table that wasn't at the
end of the row, they'd need both front and rear padding on the data. Again, plan ahead and make the
functions you provide as reusable as possible. Even if it means making an extra helper function to go
alongside the original on you'd planned!

4.2.5 Displaying a Monetary Value

We are often called upon to format an output in a particular way, in fact. Here we are tasked with
printing a monetary value to the user. To make things more interesting, this function must run across
multiple applications such as inheritances and stock pricing/dividends as well as simple prices in a store.
The implementation (aka definition) is:

void display_money(double amount, char symbol, bool in_front,
streamsize prec)
{
streamsize old_prec = cout.precision(prec);

// no scientific format on money
ios_base::fmtflags old_flags = cout.setf(ios_base::fixed);
cout.setf (ios_base::showpoint); // ALWAYS show decimals —- even Os
if (in_front)

{
cout << symbol;
by
cout << amount;
if (! in_front)
{
cout << symbol;
}
cout.flags(old_flags);
cout.precision(old_prec);
return;
by

We need helper variables to preserve the caller's format settings so we don’'t mess up anything in the
surrounding program. For more on this need, see section 2.6.5.2.1.

I've also factored out the middle on my branching structure. Many programmers would code the
above as:

if (in_front)
{

cout << symbol << amount;
}
else
{

cout << amount << symbol;
}

But | noticed that amount was printed at the end of the first branch and the beginning of the second
branch and just took that middle part out to always happen in between the other printing that was
specifically before or after it. This isn’t for everyone, so use it to your own taste.

In addition to this definition, we are going to provide a pair of helper constants for that bool argument.
After all, having raw true or false values in a call is not only tacky, but confusing! (These values have

(© Jason James @80 149 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.3. Scope

no intrinsic meaning to the average human — programmer or not. Avoiding raw bools is commonplace
in good design.)

const bool SYMBOL_IN_FRONT true,
SYMBOL_IN_BACK = false;

The caller can now use these in their calls like so:

display_money(x, '$', SYMBOL_IN_FRONT, 2);
cout << '\n';

cout << "The cantaloupes we received in today cost ";
display_money(x, 'L', SYMBOL_IN_BACK, 2); // can't do 'pounds' symbol
cout << ".\n";

Contrast this with:

display_money(x, '$', true, 2);
cout << '\n';

cout << "The cantaloupes we received in today cost ";
display_money(x, 'L', false, 2); // can't do 'pounds' symbol
cout << ".\n";

And you can see the improvement the constant names make.

4.3 Scope

I've mentioned something in passing that | think deserves a little more attention. In particular, what's
that 'local’ | used when describing the variables inside a function rather than their arguments? Well,
that's all about the scope (aka visibility) of identifiers. There are four kinds of scope that interest us at
this time: global, namespace, local, and block.

Global scope is everything not inside a function. This includes the function itself and any constants
you've made outside a function. It can also include any typedefs or using aliases you've made for clarity
and ease of use. All of these things are readily shared by all functions in a program with no harm done.

However, global variables are a strict no-no! The trouble is that you might place your variable
globally and another programmer on the team decides they want a variable with that same name. Many
programmers will use a variable and then scroll up to declare it later in their coding process. If the
programmer forgets to declare their variable locally, they will use your global. Then, when it is your
code’s turn again — maybe you called their function as part of yours, your variable has been altered and
could possibly damage your results.

So, long and short: NO global variables!

Identifiers inside a namespace are local to that area unless a using directive pulls them out of it. We
will look at using our own namespaces later, perhaps.

Local scope means the identifier is inside a function and no one outside that function can see or use
it. Even if they have a variable, for instance, with that same name, it is theirs and not yours. They don't
conflict or overlap in any way.

Block scope makes an identifier only visible in the closest pair of curly braces. We sometimes, for
example, declare a helper variable inside a loop that does something complicated but we don't need that
result after the loop is over — not even this round of the loop! (That's right, a block scope identifier is

(© Jason James @80 150 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

destroyed at the close curly of the block and recreated should the open curly ever be passed again in the
execution.)

4.4 Arguments

This section focuses on arguments. We talk about the passing mechanism: how do those actual argu-
ments become formal arguments. We'll see the usual mechanism for this and a new one with a little
more oomph. We'll also discuss two tools for making functions more configurable and easy to use for
your caller.

4.4.1 Passing Arguments

First we should explore how arguments we've used so far are dealt with in the computer’'s memory during
a call. Then we'll talk about alternatives.

4.4.1.1 Normal Argument Passing

The following image is a picture of how a function looks inside the
memory of the computer. It exists on a place called the function call
stack or execution stack. It's box is called its frame or record on this
stack. Within the frame, I've drawn a variable we are about to use
in our call to the round_nearest function. Here is the call, just for
reference:

cost

cout << round_nearest(cost, 0.01);

Now, as we call the round_nearest function, its memory area is
carved out on the function call stack. It holds memory for the function’s
arguments and would also hold space for any local variables had there —>| | | |<—
been any. They are stacked with the called function atop the caller — value multiple
the function that called the new one, thus it being called the function
call 'stack’. The values from the call — that of cost and the literal _ 0. 01—
value 0.01 — are transferred to the function’'s value and multiple
arguments, respectively. Function arguments are always lined up from
left to right in this fashion. The compiler doesn't understand the semantics (aka meaning) of each
argument — just their data types. As long as those match, it is happy. This is indicated by arrows in
the diagram:

cost

At this point, the called function (round_nearest) and the caller
exist simultaneously on the stack. But only the function on top is
executing on the CPU. The caller has been suspended and is waiting |1o.o46 | |o.01 |
for the called function to return. The stack looks like this as the called value multiple
function runs:

As the function finishes its computation, the value 10.05 is

returned to us and we pass it on to the << operator on cout. This cost
operation, in its turn, takes the same memory — possibly a little more

or less — on the function call stack that round_nearest took up. In the end, after the insertion oper-
ation returns, the stack looks just like it did to begin with — our cost variable is even still 10.046 —
unchanged from its original value by all of the function's work.

Because the function simply receives a copy of the actual argument’s value in its own memory area, we
call this mechanism of passing arguments the value mechanism. And, in a like vein, we call the arguments
themselves value arguments. Some people like the more formal-sounding " pass-by-value arguments”, but
that's too rich for my blood!

(© Jason James @80 151 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

One more quick thing, | said above that the arguments must match in type — but it is a little more
involved than that. This is because for simple value arguments, the compiler will allow coercion to occur.
So, for instance, we could pass an integer to the double arguments of round_nearest. Worse, we could
pass a char or a bool!

4.4.1.2 Another Way

Let's say, on the other hand, that a function's arguments weren't value arguments. Let's say they had
the right somehow to change our actual argument(s) in place in our memory. This mechanism would
allow them to refer directly to our memory locations and both read and write them. We therefore call
this mechanism of passing arguments the reference mechanism and the arguments so passed reference
arguments.3

Why would we want to do this? Well, it can afford us the chance to write a function that produces
more than a single result in a single call. With the return mechanism, you see, there can be only one
result or no results per call. With the reference mechanism of passing arguments, we give the called
function write access to our memory. If this involves more than a single argument, the function can
write multiple answers to our memory during its execution. This will give us multiple answers upon the
function's return!

What might this look like on the function call stack? Well, we'd start out just like before with just
us on the stack. But let's use a different us and a different function where reference arguments might
make sense. We don't need to change the caller's value on round_nearest — we're returning the
answer — and certainly not their multiple.

Here is a new function to be called:

void swap(char & a, char & b)
{

char c{a};

a = b;

b = c;

return;
}

This function purports to swap the content of the two variables to which it is allowed to refer. We
can tell it is referring to its arguments by the ampersand (&) after each argument’s type. Note how until
now our arguments had no such syntax — just a type and an argument name.

It does this by copying the first variable's value into a local variable named c. Then the first variable's
memory space is overwritten with the value from the second variable. Finally the second variable's memory
is overwritten with the value from the local variable — which used to be that of the first variable!

This trio of assignments is your first real algorithm. Although we've used this term earlier to just
denote any sequence of steps to solve a problem, it is also used to signify a solution to a language and
platform independent neutral situation. Here, swapping the contents of two memory locations needs a
third and three assignments. In future chapters we will study many classic algorithms like this. This
becomes especially important in chapter 6 on the vector and array classes for container storage.

We set up a call to this function like so:

char x = '%', y = "'/"; // sample initial values
swap(x, y);
// now x will be '/' and y will be '}’

3Yes, or " pass-by-reference arguments”. *bleah*

(© Jason James @80 152 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics

4.4. Arguments

As the function is called, the actual and formal arguments are once
again aligned from left to right. Thus a will be set to refer to x and
b will refer to y. The compiler sets up these references as well as the
local variable c.

Note that the references take up no new memory — they just exist
to refer to the original memory space of the caller’'s actual arguments.
This might look like so on the stack:

When doing the alignment, by the way, the compiler takes special
care to match the argument types exactly. This is because the for-
mal arguments are meant to refer to a memory location of an exact

size/layout. If this doesn't match the actual argument exactly, disaster could strike!

As the swap function executes, the value of a is accessed to store
in c. But as we know, a has no memory of its own. So it must refer
down-stack to the memory in its caller — our memory. It was linked
to x at the call time, so that is whose value it finds and the value '%'
is put in its local variable c:

Note how the reference arrows are still there in the diagram un-
like the transfer of data arrows from the value arguments in the
round_nearest example. Those arrows were just for the call itself
and then went away. The reference arrows exist throughout the exe-
cution of the called function.

In the next statement, the swap function takes the value of b and
puts it in a. Again, b has no memory of its own and so it grabs the
value from its referenced memory — that of our y variable. This is then
stored in a. But it has no memory and so the value is actually dropped
into the referenced memory — our variable x. In memory, things now
look something like this:

Awesome! We've got our first result stored in x. And this result will
stay there even after the swap function finishes executing and returns
control of the CPU to us.

But it does appear that we now have two copies of the ' /' character
instead of one of those and a '%'. How can this get fixed?

Looking to the next statement, the swap function copies the value
of c into b. Since b has no memory, it simply refers to the memory in
our stack frame for y. Thus the '%' from c drops into our variable y
like so:

Now we have both values back — and they have switched memory
locations! The references worked!

But we aren't quite done. The swap function is still running. It
next returns. It's frame and the references with it all disappear from
the call stack. Even though its return type was void and its return
statement empty, we have two answers afterwards!

4.4.1.3 More Details of References

Is that all? Is there anything more to this reference thing? Certainly!

C
L 5 b =
<« I A
X y
Y,
C
L_— 5 b =
<« I A
X y
Y,
C
L 5 b =
> /| L=
X y
Y,
C
L_— 5 b =
>/ | L«]
X y

The reference mechanism not only takes up less space than the value mechanism — it doesn’t need
to make copies into local space, after all. It also executes faster than the value mechanism because of
this lack of copying. So we could use the reference mechanism to speed up our function calls. But that

(© Jason James @80

153 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

wouldn't be safe for our variables which might be accidentally or maliciously changed. It also wouldn’t
work if we wanted an actual argument that was a literal or constant — the former has no memory to
refer to and you can't change the latter!

Not to worry! We can fix all those things with a simple keyword. Some of you may have guessed
it already: const. This can be used to mark the formal argument to not change during the function’s
execution. When combined with the reference mechanism on an argument, it makes the argument as
fast as a reference but as safe and flexible for the actual argument as if using the value mechanism.

Where might this come in handy? Should we use it on all our arguments that don't need to change?
No, we should use it only on arguments of a larger size than the builtin types. Builtin types all run at
the standard speed of the computer (whatever gigahertz your CPU is rated at). But larger types — like
strings — take more time to transfer and set up in new space. This makes them ideal candidates for
passing by constant reference. For instance, we could alter our previous welcome function to use this
for its string argument:

void welcome(const string & prog_title);

I'm only showing the prototype here because the definition only need change its head. The body
doesn’t have to change at all just because its argument is moving in slightly differently. That is, we still
use const& arguments just like we used value arguments except that we can't change them. (This does
mean that the variation where we changed the prog_title argument instead of making a local welcome
string can't work now. But we didn't like it that well, anyway.)

In fact, this leads to a general rule for passing any class object: pass by reference to change the
original or by const& to avoid both changes and copying the object.

4.4.1.3.1 Caveat to the Reference Rule

Let's look at our code to print an uppercase version of a string again. Making a string uppercase is
actually a fairly reusable tool. Maybe we should make it into a function. Let's start with the code we
want to make into a function. We could uppercase a string like this:

for (string::size_type i = 0; i != s.length(); ++i)
{

s[i] = static_cast<char>(toupper(s[i]));

We couldn’t use a range-based for loop because each pass makes a copy of the char at the next
location, right? Yes, that was the case before. But now that we know about references, it's time to see
them all over the place! Or at least here. With some reference syntax we can make our range-based
for loop able to change the elements of the string as it goes by:

for (char & ¢ : s)

{

¢ = static_cast<char>(toupper(c));

Much more compact! Still need the typecast to avoid the integer to char conversion warning, but really
nice on the for head!

Now to put this into a function. We have a few design choices as to the string argument. We
clearly need this string s to come into the function. c is local to the loop and so local to our function
as well. But the string argument can be value, reference, or even const&.?

4BTW, some people even code the type for a constant reference argument as type const & instead of const type &.

(© Jason James @80 154 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

So, which do we use? Let's look at each and its repercussions and then decide.

Value Version: This would look like so:

string toupper (string s)
{
for (char & ¢ : s)
{
c = static_cast<char>(toupper(c));
}
return s;
}

This one makes a copy of the caller's string into our own memory space and calls it s. We then walk
through each character in s by reference and change it to its uppercase form. This changes the copy of
the caller’'s string — not the caller’s actual string. Then we return a copy of our now uppercase s
to the caller for them to print or store as they see fit.

That's a lot of copying and if the caller stores the result back into their original string, we've wasted
all that memory and time. The only way this makes sense is to store the result somewhere else or to
insert the result directly to cout.

Reference Version: The code for this version looks like this:

void toupper(string & s)
{
for (char & ¢ : s)
{
c = static_cast<char>(toupper(c));
}
return;
}

Note that we not only changed the argument to a reference but also changed the return type to
void. This is because we don't need to send back a copy of something we've already stored directly in
the caller's memory.

This variant works well when the caller wants to change their original string but not so well when
they just want to print the result. Then they have to do something like this:

toupper(s) ;
cout << s;

Not a simple one-liner. Also, looking at this call, we realize it isn't like the cctype toupper function
which returns its result. That might be a little off-putting to callers.

Constant Reference Version: This variation looks like this:

string toupper(const string & str)
{
string s{str};

This helps them visually see that the reference is unchanging. Others don't like reversing the const from their usual place
for it. | leave it up to you and your teacher to decide.

(© Jason James @80 155 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.4. Arguments

for (char & ¢ : s)

{

c = static_cast<char>(toupper(c));
}
return s;

This one takes the constant reference as formal argument str and then immediately copies it into
local variable s. This is because some string must change to all uppercase and it can’t be str as it
was marked const.

Since we can't change the actual argument this time, we also have to send back our result via the
return mechanism again.

Making a local copy like this is a little time/space consuming and reminds me of the copy made by
the first version. In fact, it takes the same amount of overhead to do the value version of this function
as it does this one. And here we thought const& was a panacea to solve our large object passing woes!

Conclusion: The results seem clear: value wins. Even though we are creating a changed form of the
string, we don't necessarily want to change it in place. Also, the function not performing like the char
version is a little odd.

The rule needs amending, clearly:

e pass by reference to change the object in-place

e pass by constant reference to view the object but not change it
e pass by value to change the object but not the original

This last one doesn’t happen a whole lot, but it is well worth having in there — just in case.

4.4.1.3.2 Function Design Again

Having written a nice toupper function for strings, we turn immediately to the name-casing situation
from earlier. We had settled on this variation (now with a range-based for):

for (char & ¢ : s)
{
c = static_cast<char>(tolower(c));

}
s[0] = static_cast<char>(toupper(s[0]));

Note that we can use a reference on the element catcher in the range-based for loop. This allows
us to make changes to the element as we go past it! Very handy. ..

As a function (and learning from our uppercase experience) it would look like this:

string name_case(string s)

{
for (char & ¢ : s)
{
c = static_cast<char>(tolower(c));
}
s[0] = static_cast<char>(toupper(s[0]));
return s;

(© Jason James @80 156 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

But that for looks an awful lot like the uppercasing function we made before. In fact, it could be
a reasonable addition to our growing 'family’ of functions here. (A family of functions is a group of
functions that share common characteristics and are, in fact, often tightly related. We don’t always need

all of them in a particular application, but they often go together and we let the compiler strip them out
if unused.)

It could be realized thusly:

string tolower(string s)
{
for (char & ¢ : s)
{
c = static_cast<char>(tolower(c));
}
return s;
}

And then we can rewrite name_case to use it:

string name_case(string s)

{
s = tolower(s);
s[0] = static_cast<char>(toupper(s[0]));
return s;

}

Nice! Now if we need to manage the case of some strings, we'll know to come looking for this function
family. (And in a few sections — 4.5.2 — we'll make it even easier to reuse them!)

4.4.2 Function Overloading
Overloaded functions are [two or more] functions which:
e have the same name
but
e either have a different number of arguments
e or have different types of arguments.

The compiler can tell which function is being called by merely counting the number of actual arguments
or noting that the actual arguments’ types match one function better than another. The match is done
in our usual left-to-right manner.

The actual job these functions perform would ideally be similar if not the same. Otherwise, they'd
probably have had different names, right?

Note that the return type is NOT involved in this process at alllll Since the returned value can
simply be thrown away — not used — the compiler cannot be assured that it can match return types
during a call. So it doesn't even try.

(© Jason James @80

EY MG TR

157 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.4. Arguments

4.4.2.1 Revisiting Rounding

Let's take a look back at our round_nearest function with an eye toward overloading. If we were to
overload with it, we might choose this approach:

// Function to round caller's value to the nearest integer
// (or whatever multiple they desire -- see multiple

// argument) .

//

double round_nearest(double value, double multiple);

// As above, but assume one's place. ..
double round_nearest(double value) ;

We've just declared the functions so far, but already you can see the point to the separation. With
the second function the caller doesn’t have to type , 1.0 all the time. The definitions are similar but
subtly different:

// Function to round caller's value to the nearest integer

// (or whatever multiple they desire -- see place argument) .
//

// NOTE: The place doesn't have to be a multiple of 10, it
// can be a multiple of 5 or 2.5 or 0.43 or

// “anything~!

double round_nearest(double value, double multiple)

{

return round_nearest(value / multiple) * multiple;

// As above, but assume one's place. ..
double round_nearest(double value)
{

return round(value) ;

Note how the one's place overload doesn’t have to scale the value — just round it. It might seem
silly to write our own function to just call the cmath function round, but it makes this a package deal
— the caller doesn't have to remember the cmath function at all — just our round_nearest suite.

There is another advantage to this setup, as well. The general overload only focuses on the scaling
aspect rather than the rounding part. It passes that off to the one's place version. This often earns
the smaller function the designation of a 'helper’ function since it serves to help the more work intensive
function do its job.

Instead, we could have coded the functions like so (comments removed to help you focus):

double round_nearest(double value, double multiple)
{

return round(value / multiple) * multiple;

double round_nearest(double value)
{

return round_nearest(value, 1.0);

(© Jason James @80 158 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

[)

This saves work for the one’s place function by simply calling the more general overload with the
value the caller left off. But it puts more work on the general overload.

However, the earlier separation not only helped with the workload balance, but also separated the
two aspects of a general rounding scheme: rounding to the one’s place and scaling to the one's place.
This helps us debug the functions by helping us isolate possible problems with good test cases.

4.4.2.1.1 Testing Functions Adequately

Speaking of testing, how might we adequately test these two functions before putting them into a
program? Test them first? Yes, of course! Why put them into production before they are known to
work? We often write separate programs to test a function or two [or three or...]. Such a program
might look like this:

int main(void)
{
char yes_no;
double x, mult, ans, ansli;
cout << "Test round_nearest() function? ";
cin >> yes_no;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
while (toupper(yes_no) != 'N')
{
cout << "\nEnter number to round: ";
cin >> Xx;
cout << "Enter multiple to round to: ";
cin >> mult;
ans = round_nearest(x, mult);
ansl = round_nearest(x);
cout << "\nRounding " << x << " to the nearest "
"multiple of " << mult << " I got " << ams
<< ", is that okay?\n";
cout << "\n(BTW, I took the liberty of rounding to "
"just the one's place and got " << ansl
<< ", neat, hunh?)\n\n";
cout << "Test round_nearest() function again? ";
cin >> yes_no;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
}
return O;
}

Here we ask a user — the tester® — to enter both potential arguments to the function pair. We
then call the function with both argument patterns and record the answers. Finally we print the results
out and nudge them to mark that down in their log with a phony question we don't intend to read a
response to. Their log could be a spreadsheet with a list of test cases and expected answers where they

5We are the tester here, but this will often be a person from the dedicated testing department who runs tests for all
projects in the company.

(© Jason James @80 159 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

log a checkmark vs. an actual — erroneous — result and any other details they feel appropriate to help
the coder fix the issue.

We wrap the whole thing in a yes/no loop to ease the tester’s job. If we had more disparate functions
to test — perhaps we'd also written a whole family of rounding functions like round_up and round_down
with the scaling features of our round_nearest, we would probably provide a menu to the tester instead
of just a yes/no loop.

4.4.2.2 Too Similar Types in Overloading

What if we have used different types in our overloading, but they are similar in that they have a common
type that looks like them all? Let's use a random number suite to test this idea:

// randomly generate a value within the inclusively bounded
// range specified

short rand_range(short min, short max);

long rand_range(long min, long max);

double rand_range(double min, double max);

Here we've got a family of rand_range functions with very similar argument types: two integer types
and a floating-point type. These being all numeric types are similar to the raw literal type int and
although calls like these:

cout << rand_range(4.2, 42.0) << '\n'; // okay, calls double version
cout << rand_range(4L, 42L) << '\n'; // okay, calls long version

will succeed with ease, a simple one like this:

cout << rand_range(4, 42) << '\n'; // eek! should the 'int' be made
// into short, long, or double
// for compatibility?!?

\.

fails miserably!

The compiler gets confused between the three overloads because int can easily — in just one step
each — convert to short, long, or double. Since the coercions are so equitable, the compiler reports
an ambiguity between the overloads. These warnings are often confusing to new programmers, so don't
fret! They become more readable as you see them more and learn to read the compiler's messages.

How can we fix this issue? We can take one of two approaches: typecasting or helper constants.
These look like so:

// to fix this, use a typecast:
cout << rand_range(static_cast<short>(4), 42) // maybe don't need two casts
<< '"\n'; // okay, calls short version

// or use helper constants (or variables):
const short m = 4, M = 42;
cout << rand_range(m, M) << '\n'; // okay, calls short version

Here the programmer has cleverly named their minimum value m in contrast to the maximum value
of M. This is bad practice in general, but might work okay in a one-off situation.

But now the compiler knows clearly which function to call either way we fix the situation. Note that

we only had to cast one of the arguments to short for the compiler to figure out which call to make.

(© Jason James @80 160 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

This made one of the arguments an exact match and therefore it only had to coerce one argument and
that made it happy enough to not call out " ambiguity!”

Before we shift gears slightly, though, let’s refresh our memory of how these functions might look:

short rand_range(long min, long max)

{
return min + rand() % (max - min + 1);
+
short rand_range(short min, short max)
{
return static_cast<short>(min + rand() % (max - min + 1));
}
double rand_range(double min, double max)
{
return min + rand() % RAND_MAX / (RAND_MAX - 1.0) * (max - min);
+

4.4.2.3 Reference Types and Overloads

One type-based overload that won't ever cause ambiguity is when overloading based on a reference type.
Let's look at some functions for inputting values from the user:

double read_numeric(double & num, const string & prompt, const string & errmsg);
long read_numeric(long & num, const string & prompt, const string & errmsg);
short read_numeric(short & num, const string & prompt, const string & errmsg);

These functions will use a fail loop to protect the input from non-numeric-ness. They don't concern
themselves with domain validation so we can keep the argument list down to essentials. That can be
added with another layer of function like read_range or something similar.

Note that the compiler can’t get confused on a reference argument because the types for references
can't be coerced. This isn't so with the constant reference arguments for the messages, of course, but
is for the plain references for the answers. Why is the answer being both returned and referenced? This
gives the caller the option of holding a backup or 'undo’ value with ease. In case the user changes the
input during a menu choice or the like and wants to go back to the original without retyping it.°

Again, for completeness and review, let's look at these function’s definitions:

double read_numeric(double & num, const string & prompt, const string & errmsg)
{
cout << prompt;
cin >> num;
while (cin.fail())
{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << errmsg,
cout << prompt;
cin >> num;

6Perhaps not of great use here with simple numbers, but a good technique to keep in mind for larger data like image
files or the like!

(© Jason James @80 161 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.4. Arguments

}

return num;

long read_numeric(long & num, const string & prompt, const string & errmsg)
{

cout << prompt;

cin >> num;

while (cin.fail())

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << errmsg;
cout << prompt;
cin >> num;

}

return num;

short read_numeric(short & num, const string & prompt, const string & errmsg)
{

cout << prompt;

cin >> num;

while (cin.fail())

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << errmsg;
cout << prompt;
cin >> num;

}

return num;

We note the redundancy here in the codes. Why do we even need three separate functions? Because
the actual action of reading the different types is changing. In fact, it is realized by cin's extraction
operator (>>) via overloading of a special sort. We may discuss this in a later course or later in this
course as time permits.

But never fear! We will learn a technique soon (section 4.6.1) for removing this redundancy.

4.4.2.4 To Sum Up
That was a lot, perhaps, to deal with, so here is a summary of the benefits of overloading:

e only having to come up with one name when we don't need different names (that is, when the
concept is the same)

o flexibility for the caller who can call with just the information they have and need worked with in
their situation

e sometimes allowing for more efficient code for special cases (as with the round to the one's place
above)

e although we have to write multiple functions, they can often rely on one another to do part of each
other’s work

(© Jason James @80 162 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.4. Arguments

e even when they do rely on one another, it helps to debug based on observed logic errors and which
function’s code must have been responsible for that issue

Care should be taken when overloading based solely on types to make sure that — for all but non-
const references — you don't fall into coercion traps (aka an ambiguity). If you do, a simple typecast
can [typically] get you back out with no problems.

4.4.3 Default Arguments

Another argument tool is defaulting arguments to special values. This is akin to how many dialog boxes
have defaults selected for various bits and bobs in them. Consider the simple interface a printing dialog
gives you by pre-selecting a printer, number of copies, and even the Ok button is the default when you
Jjust hit /. Each of these values has a default status that serves well in most cases. But, at
your discretion, each can be changed to a value that serves you better right now.

This is similar to how defaulted argument values can aid your function's caller. A default value for
an argument to a function can provide a flexibility or convenience for your function's caller. If there are
certain parameters which are often the same but may sometimes need to change, you can leave them as
parameters but set a default value for them. This way, should your caller need to provide special values,
they can; but typically they can simply allow the values to default.

That is, defaulted argument values allow the caller of a function to provide their value for an argument
or leave it off to use a default value instead.

4.4.3.1 Rounding Yet Again

One example of using a default argument could be our rounding suite from earlier. Instead of overloading
two functions, just provide a default argument for the one missing from the helper overload:

double round_nearest(double value, double multiple = 1.0);

The compiler then knows that this function can be called as:

round_nearest(x) // defaults to rounding to the
// nearest whole number

or still as any of:

round_nearest(pay, .01) // round to nearest penny
round_nearest(calc, .0001) // round to nearest ten-thousandth

round_nearest (minutes, 15) // round to nearest quarter hour

It just depends on the caller's needs. ..

We should take a careful look at this function's definition, however, as things might not be as you
first expect them to be:

double round_nearest(double value, double multiple /* = 1.0 */)
{

return round(value / multiple) * multiple;

(© Jason James @80 163 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

Here we do not specify the default value on the parameter! We are, in fact, forbidden to do so by
the standard. What would happen, for instance, if we were to accidentally change the default in the
prototype but not the definition? The compiler wouldn't know which default to use, now would it? Sure,
a compile-time error isn't a big deal to us by now, but surely we could avoid it by just having the default
listed only once by rule.

Can you place the default on just the definition instead? No. How, after all, would the compiler know
what value to substitute for a missing parameter if it were not listed until the definition — all the way
after main? It must be defined on the first head of the function the compiler sees — the prototype here.

This might seem less efficient, of course, because we are now sometimes multiplying and dividing by
1.0. Indeed, it is less efficient. But it saved the programmer countless seconds of typing and debugging
to have just the one function instead of two.

4.4.3.2 Caveats & Guidelines
There are some issues with defaulting arguments, however, that bear discussion:

e Default argument values can only be listed on a single function head; you may not repeat them on
the other function head! Therefore, we typically place default values in the prototype as it is the
first head the compiler will see (and also the only head the caller is likely to see before the function
is called).

e Arguments with default values must be at the end of the argument list.

e Caller may leave actual arguments off the end to indicate that they wish to use the defaulted value
for those arguments. |.E. they cannot skip a defaulted argument and fill in a later one:

[f(arg_value, arg_value, , default_replacement)

o |t would be best if you could place those arguments whose [defaulted] values are least likely to be
changed further back in the list. If you are unsure, perhaps a poll of your coworkers could help?
But if you cannot make such a determination, that’s okay.

e Non-const reference arguments are almost never defaulted since we make no global variables to
which they can refer. (We do have cin, cout, etc. which are global, but we don't know their
actual types yet. .. that’s for later. *smile*)

e Constant reference arguments may be given a default value. This can be used to good effect
especially with string parameters meant for prompts, error messages, or the like:

£f(..., const string & prompt = "")

4.5 Tools for Better Functions

This section deals with tools and techniques to help you make functions more reusable and more efficient
as well as making the processes of creating and testing functions a little easier.

4.5.1 [Re]Factoring

Let's talk again about factoring. You may recall our discussion of factoring a branch from section 3.9.3.
It simply means removing redundant code to a common place. Here we'll take the redundant or excessive
code and place it into a function for re-usability.

(© Jason James @80 164 of 361

EY MG TR

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

4.5.1.1 Budgeting Woes

Let's say we had code to take in the user's budget amount and remember their monetary unit and its
placement for a later report. It might look like this:

char pre_unit, post_unit;

bool unit_in_front, unit_entered;

double budget;

const char default_unit = '$';

const bool default_unit_side = true; // in front/left of the money

unit_entered = false;
cout << "\nEnter last year's budget: ";
cin >> ws;
if (ispunct(cin.peek()))
{
cin >> pre_unit;
unit_in_front = true;
unit_entered = true;
}
cin >> budget;
if (peek_ahead() !'= '\n')
{
cin >> post_unit;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
unit_in_front = false;
unit_entered = true;
}
if (! unit_entered)
{
unit_in_front = default_unit_side;
if (unit_in_front)
{
pre_unit = default_unit;
}
else
{

post_unit = default_unit;

While there are certainly other tweaks we could do to this code, it will work fine to gather the user’'s
input and assign a unit for the money in the report as well as whether that unit should be displayed before
or after the money’s value.

It has already been factored somewhat in that we are reusing our old friend peek_ahead to remove
a run of whitespace that might precede an end of input.

However, this pre- and post- peeking is tedious and cumbersome. With proper factoring and a little
clever initialization, we can avoid quite a bit of it.

Let's design two functions for pre- and post- peeking respectively:

(© Jason James @80 165 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

// read an optional char from after an [numeric] input;
// default is returned if no value is entered by user.
char get_opt_post(char def_value)

{
if (peek_ahead() != '\n')
{
cin >> def_value;
}
return def_value;
}

// read an optional char from in front of a numeric input;
// default is returned if no value is entered by user.
char get_opt_pre(char def_value)

{
cin >> ws;
if (! is_numeric(static_cast<char>(cin.peek())))
{
cin >> def_value;
}
return def_value;
¥

While the ispunct test was good for our typical situation, we decided here to branch out to allow
for letters as well. To do so, we allow the non-optional item to be anything that can start a number.
This was factored out to a helper function as well:

// true if ch is a digit, ., —, or +. false otherwise.
//

// basically anything that can “start™ a numeric value.
bool is_numeric(char ch)

{
return isdigit(ch) // IS a digit
[| ch =="'." // OR a decimal point
|| ¢ch == '-' // OR a 'negative' sign
|| ch == '+'; // OR a 'positive' sign
}

Quibble over the name all you want, this is a helpful function in many situations.

So, to use the optional notation helper functions, we could do this in our prior program:

char pre_unit, post_unit;
double budget;

const char default_unit = '$'
const bool default_unit_side

true; // in front/left of the money
cout << "\nEnter last year's budget: ";
pre_unit = get_opt_pre('\0');

cin >> budget;

post_unit = get_opt_post('\0');

if (pre_unit == '\0' && post_unit == '\0')
{

(© Jason James @80 166 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions
bool unit_in_front = default_unit_side;
if (unit_in_front)

{
pre_unit = default_unit;
}
else
{
post_unit = default_unit;
}
}

That's about half as much code. Only setting the default for the local region is bulky now.

Does any of this help at report time? Well, our initial report might have looked like this:

cout << "\nYour new budget will be ";
if (unit_in_front)
{
cout << pre_unit;
}
cout << new_budget;
if (! unit_in_front)
{
cout << post_unit;
}

cout << " next year.\n";

Now our report can be as simple as:

cout << "\nYour new budget will be " << pre_unit << new_budget
<< post_unit << " next year.\n";

Here we've taken advantage of the fact that null characters don't normally display on screen at all
to remove the ifs. If that isn't the case for your target system, then you'd need to protect their display
by testing that they weren't null on either side:

cout << "\nYour new budget will be ";

if (pre_unit != '\0')
{
cout << pre_unit;
b
cout << new_budget;
if (post_unit != '\0')
{
cout << post_unit;
}

cout << " next year.\n";

While not an improvement in lines of code, it does save a variable in the long run!

(© Jason James @80 167 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

4.5.1.2 Reading Coordinates

Another situation that lends itself to the above optional notation helpers is input of coordinates in the
plane. Many people will leave off standard notation like the parentheses around the coordinates or even
the comma that separates them! To help with this, we can code this:

t = get_opt_pre('\0");

if (t == '\0')
{
cout << "missing (";
}
else if (t != '"(")
{
cout << "invalid: need (";
}

cin >> x1;
t = get_opt_pre('\0");

if (t=="'\0")
{
cout << "missing ,";
}
else if (t != '",")
{
cout << "invalid: mneed ,";
}
cin >> yi;
t = get_opt_post('\0"');
if (¢t =="'\0")
{
cout << "missing)";
}
else if (t != ")'")
{
cout << "invalid: need)";
}

Here t is a char and x1 and y1 are both doubles. The messages need work, but the intent is clear
and we've used our helper functions. However, it still seems redundant, doesn’t it? Both of the sections
for the x and y coordinates seem similar. Let's make sure. In the olden days, we would have had to print
both fragments and hold the papers up to the light. If they were clear, we had redundancy and any fuzzy
parts were differences we could use for parameters or results from the new function.

Nowadays, however, we have automated difference checkers. They go through two files” and tell
what they have in common and what is different. Some are more terse and hard to read but make
automated adjustments easier. The ones we are interested in, though, are going to make it visibly clear
what is the same versus different. Such graphical or at least nice text mode apps are so common they
have a dedicated page or two at Wikipedia.

Which one you end up using will depend on your system, what's even installed there, and your
preferences once you've tried some of them. But here are my recommendations for free tools:

"You'll have to make a separate file for each fragment of code you feel is redundant to run it through the checker.

(© Jason James @80 168 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions

Programming Basics

4.5. Tools for Better Functions

Mac: On macos, the going standard is FileMerge. This comes with your XCode
install. You can use it from the command prompt/Terminal app with the moniker
‘opendiff’.
Windows: On Windows, the going standard is, | believe, WinMerge. (Visual Studio used
to come with one, but it has been discontinued.)

Linux: There are many competing standards here, but vimdiff is good for editing the
compared files. | like xxdiff for just looking for differences but it is experiencing
problems on newer Ubuntu systems right now. Also, kdiff3 is a popular option
and comes with the KDE desktop. It has the interesting feature that it works
with up to three files at once — hence the name.

If you are interested in using the same software on several systems, there are many options, but |
think Meld is pretty popular.

For more on these tools and the many other options, check out the Comparison of file comparison
tools page at Wikipedia.® For more on how the tools work and their history, see the File comparison
page instead.

Anyway, if we run the above fragments through one of these checkers, we can see the differences
displayed like so:

t = get opt pre('\0'); t = get opt pre('\0');
if ((t == "\0' if (t == "\0O'

cout << "missing ,";

cout << "missing (";

else if £ 1= '|{" else if I —

cout << "invalid: ; cout << "invalid: need ,";

cin >> ml; cin >> yl;

This shot is from the GUI version of vimdiff and we can clearly see from the highlighting what is
duplicated — no highlighting — and what is changed — purple for lines and red for differences within
the lines. From this information, we can see that the character that should by default precede the
coordinate is different, the variable that we read into is different, and that the messages are mostly the
same, but do contain some changes. Thus, we might merge these two into the following function:

8Don’t you just love the double use of 'comparison’ in the page title? *chuckle*
9Yes, colors are configurable in most of these difference checkers.

(© Jason James @80 169 of 361

EY MG TR

https://en.wikipedia.org/wiki/Comparison_of_file_comparison_tools
https://en.wikipedia.org/wiki/File_comparison

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

// retrieve a numeric value from keyboard stream with an optional

// preceding character -- the leader/header; perhaps a unit or notational

// symbol? the leader is extracted and checked against a desired symbol.

// if the leader is not the desired symbol, an invalidity message is printed.

// if the leader is not present at all, a message is printed indicating that

// this symbol was missing altogether. the caller can customize these

// messages with the last two arguments.

double get_numb_with_lead(char desired_leader, const string & missing_msg,
const string & invalid_msg)

{
double number;
char t = get_opt_pre('\0');
if (t=="'\0")
{
cout << missing_msg;
}
else if (t != desired_leader)
{
cout << invalid_msg;
}
cin >> number;
return number;
}

Note that the default character and messages have become parameters to the function and the
coordinate being read is now the return value of the function.1®

We might now call this function like so:

x1 = get_numb_with_lead(' (',

"Open parenthesis missing!\n",

"Point must have a parenthesis before x-coordinate.\n");
yl = get_numb_with_lead(',',

"Comma missing!\n",
"Point must have a comma between coordinates.\n");

Now it doesn't hurt to have nice messages. The code is immensely stripped down and we have our
new re-usable function! The post-peeking code remains the same, but I'll leave its extraction into a
function to your exercise. *smile*

This factoring of already factored code, btw, is often termed re-factoring. Basically the same thing,
but with now multiple layers of function goodness.

4.5.2 Separate Compilation

We've gotten some really useful functions now, it would be nice to stop copying and pasting them between
programs, wouldn't it? Wouldn't it be nice to just #include them like we do a library? Well, let's do it!

Yep, we can build our own libraries. This process is known as separate compilation because we put
the C4++ code in a separate file. Also the compiler will actually translate the two separate C++ files (the
application and the library) into binary separately and then merge them together (this is called linking).

10After | named this function | realized the horror that was the idea of " getting numb with lead”. We definitely need a
new name, but | leave that to you.

(© Jason James @80 170 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

4.5.2.1 A Tale of Two Files

So, how do we make a library? First thing to know: a library actually comes as two files. No, not the
application and library. The library itself is two files: the interface and the implementation. We generally
only see the interface file as it is the one we #include in our application. The implementation files
for the standard C++ libraries are already in binary form and the compiler picks those up for linking
automatically.

The interface file typically contains the prototypes of all functions available in the library. Consisting
mostly of function heads, the interface file's name is typically ended with ".h" — (heads, get it?). In
addition to function heads, though, the library's interface file can also contain constant definitions and
typedefinitions.

The implementation file is much simpler. It begins by #include'ing its associated interface file and
then defines those functions which were prototyped in the interface. Since it actually contains C++
codes for these functions — not just their heads — we usually end the file name in a ".cpp’ just like a
normal C++ file. But it will never have a main because it is just a collection of functions.

Since these two files are part of the same library, they share a base name. That name, like all of our
identifiers, should reflect the content of the library — what is its purpose — what is the purpose of its
constituent functions. Name your library after the common theme of the functions it supplies. You do
have a common theme, don't you?

4.5.2.2 The Interface File

Due to the fact that interface files are #included so many times, it became necessary early on to
compensate for the possibility of accidentally including them multiple times — in the worst cases in
a circular fashion! This leads to potential warnings or even errors about duplicate symbols/definitions.
Worse, for circular inclusions, we might either crash the compiler or cause an infinite loop in the compiler.
(Which depends on how the compiler was written.)

The solution to both multiple as well as circular inclusion turned out to be a set of #if pre-processor
codes. Together these lines are known as multiple-inclusion protection, circular-inclusion protection, or
just the inclusion guard.

#if | defined(UNIQUE_SYMBOL_FOR_THIS_LIBRARY_INTERFACE)
#define UNIQUE_SYMBOL_FOR_THIS_LIBRARY_INTERFACE

// prototype, const, typedef, etc.

#endif

How this works is that we check whether a symbol/identifier unique to our library has been defined
or not. If not, we start by defining it and then proceed to the prototypes and such that make up the
library’s offering. If it was defined before, then we've already been here and we skip to the #endif at
the end of the file — avoiding all those duplicate warnings and errors.

This is quite tedious to type and making a unique symbol for each library doesn’t really have to make
it such a long name. Thus we came up with the slightly simpler:

#ifndef LIB_NAME_H_INC
#define LIB_NAME_H_INC

// prototype, const, typedef, etc.

#endif

(© Jason James @80 171 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

Here the pre-processor directive #ifndef asks all at once IF a symbol has Not been DEFined. This
serves two nice purposes together: making the two lines line up nicely to make it easier to ensure the
symbol is the same on both lines and making it easy to copy/paste the test line down to create the
definition line. | do it in about 12 keystrokes in my editor (Vim) — no mouse intervention necessary.

4.5.2.2.1 Modern But Is It Better?

Modern compilers almost all implement a directive known as a pragma. One of these pragmas is:

[#pragma once

This is touted as a one-line replacement for the above trio of pre-processor directives. But it is known
to have edge cases where it does not work — the compiler gets confused and includes the file twice or
not at all instead of once.

There are, therefore, programmers who put both the pragma AND the ifndef structure in their .h
files! | recommend just the ifndef structure for now and keep an eye on compiler pragma effectiveness
to decide when it becomes a truly universal tool.

4.5.2.3 Using a Library

To use a library in another piece of code you must, of course, #include the library's interface file in the
other code file:

[#include "lib_name.h"

Why the quotes instead of angle brackets? Why list the ".h’? One thing at a time. For the first
question, it is because the angle brackets we've used on standard libraries mean that the compiler can
find them in the standard installation directories/folders. The double-quotes, on the other hand, mean
the compiler can find the file in question in the current directory.!?

For the second question, it is because we saved our file with the .h extension, right? The standard
libraries for C++ have interface files without extensions. This was done to help folks distinguish the
libraries for C++ from those of our ancestor language C which did all end in the .h extension. And don't
forget that we also changed all our inherited library names to start with an [extra] 'c’ to indicate that
heritage.

But just as critical as #include'ing the header/interface is to compile the other code file along
with the library’'s implementation file! This is done in different ways on different systems. On my Linux
machine, | list the names of all the C++ files (not the .h files) on the command line of the compiler
execution. When I'm on XCode on my Mac, | make sure all the files — .cpp and .h — are listed in
the project. In Visual Studio Code — on either box — | make sure all my files are in the same folder
together. And, if I'm not mistaken, Visual Studio has you list the .h and .cpp files in separate folders
labeled " Header Files” and " Source Files” respectively.

Once these things are done, the compiler knows what . cpp files to compile separately and then link
together to form the binary/executable. That last thing is done by the part of the compiler known as
the linker, of course. It brings together the separate object files'? from each compiled . cpp file as well
as some system-specific binary code and links them together to form the final executable.

L All right, if the compiler doesn't find a double-quoted file in the current directory/folder, it will then fall back on the
standard install locations. But making all of them double-quotes would slow down a typical compile tremendously so we
always use the right delimiters for the task at hand.

12This has absolutely nothing to do with the object-oriented programming we'll study in chapter 5. It has to do with an
old name for binary code.

(© Jason James @80 172 of 361

http://foldoc.org/object+code

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

4.5.2.4 A Driver

A particularly important thing to do for any new library is to make a driver program to test all of
its functions. Recall that a driver tests a function like a test driver tests new automobiles on the
manufacturer’s private track. We write a driver program whose entire purpose is testing to test all the
functions provided in a library.

What does this look like? It is typically lots of looping. It can be as simple as a series of do or while
loops surrounding each function's testing. Or it could be as interesting as a menu-driven app where each
function is an option and the user gets to choose what function to test and in what order. This last is
usually the best way to go, in fact, but some new programmers will balk at such a task thinking it is too
big of a design.

What could these loops look like? Well, they need to gather the inputs the user wants to test the
function with, then call the function, and then report the results if any from the function. After that,
they can use a simple yes/no mechanism to let the user decide if further testing is in order. Perhaps
something like this:

do

{
// read test inputs
cout << "What value to round? ";
cin >> num;
cout << "What place to round to? ";
cin >> place;
// call function
result = round_nearest(num, place);
// print result(s)
cout << "\nRounding " << num << " to the nearest " << place

<< " is " << result << ".\n";

cout << "\nTest again? ";
cin >> ans;

} while (toupper(amns) != 'N');

Of course, this will force the user to test each function at least once. So if you don't want to do
that, you could use a while loop:

cout << "Test function ___7 ";

cin >> ans;

while (toupper(ans) != 'N')

{
// read test inputs
cout << "What value to round?” ";
cin >> num;
cout << "What place to round to? ";
cin >> place;
// call function
result = round_nearest(num, place);
// print result(s)
cout << "\nRounding " << num << " to the nearest " << place

<< " is " << result << ".\n";

cout << "\nTest again? ";
cin >> ans;

(© Jason James @80 173 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

If going for the menu-driven driver, you can use the do loop version inside the branch that matches
that function's option selection. (Remember, no more than 9 functions per menu level so use sub-menus
to group together similar functions if necessary!)

4.5.2.5 Examples

Let's look at a few examples to help you get your feet wet. Let's put the optional notation crew in library
form to start. The interface file would look like this:

#ifndef INPUT_H_INC
#define INPUT_H_INC

#include <string>

// read an optional char from after a [numeric] input;
// default is returned if no value is entered by user.
char get_opt_post(char def_value);

// read an optional char from in front of a numeric input;
// default is returned if no value is entered by user.
char get_opt_pre(char def_value);

// Function to peek ahead on the keyboard stream until a
// non-space or a newline is encountered. All leading
// spacing (except newlines) will be ignored. The next
// character in the keyboard stream at the end of this
// process is returned -- but NOT extracted!!!

char peek_ahead(void);

// retrieve a numeric value from keyboard stream with an

// optional preceding character -- the leader/header;

// perhaps a unit or notational symbol? the leader is

// extracted and checked against a desired symbol.

// if the leader is not the desired symbol, an invalidity

// message is printed.

// if the leader is not present at all, a message is printed

// indicating that this symbol was missing altogether. the

// caller can customize these messages with the last two

// arguments.

double get_numb_with_lead(char desired_leader, const std::string & missing_msg,
const std::string & invalid_msg);

#endif

Notice that the get_numb_with_lead function takes string arguments and so needed the string
library #included. Also, we didn't do a using directive but rather placed the std:: syntax on each
occurrence of string. This is important because it keeps the lookup of names for the programmer
#include'ing our library clean. That is, they don't have to use the standard namespace unless they
want to. If we had the using directive in the .h file and they #included it, they would be forced to
keep using that namespace, too!'3

13We might see a couple of tricks later as to how to avoid this issue, but for arguments and return types, this rule will
always be in effect.

(© Jason James @80 174 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

The implementation for this library is pretty straight-forward:

#include "input.h"

#include <iostream>
#include <cctype>
#include <string>
#include '"classify.h"

using namespace std;
// read an optional char from after a [numeric] input;

// default is returned if no value is entered by user.
char get_opt_post(char def_value)

{
if (peek_ahead() !'= '\n')
{
cin >> def_value;
}
return def_value;
}

// read an optional char from in front of a numeric input;
// default is returned if no value is entered by user.
char get_opt_pre(char def_value)

{
cin >> ws;
if (! is_numeric(static_cast<char>(cin.peek())))
{
cin >> def_value;
+
return def_value;
}

// retrieve a numeric value from keyboard stream with an
// optional preceding character -- the leader/header;
// perhaps a unit or notational symbol? the leader is
// extracted and checked against a desired symbol.
// if the leader is not the desired symbol, an invalidity
// message is printed.
// if the leader is not present at all, a message is printed
// indicating that this symbol was missing altogether. the
// caller can customize these messages with the last two
// arguments.
double get_numb_with_lead(char desired_leader, const string & missing_msg,
const string & invalid_msg)
{
double number;
char t = get_opt_pre('\0');
if (t=="'\0")
{

cout << missing_msg;

(© Jason James @80 175 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions
}
else if (t != desired_leader)
{

cout << invalid_msg;
}
cin >> number;
return number;

// Function to peek ahead on the keyboard stream until a
// non-space or a newline is encountered. All leading
// spacing (except newlines) will be ignored. The next
// character in the keyboard stream at the end of this

// process is returned -- but NOT extracted!!!
char peek_ahead(void)
{

while (cin.peek() != '\n' && // and yet (but)

isspace(cin.peek()))
{
cin.ignore();
}

return static_cast<char>(cin.peek());

Note that this file does use the standard namespace. This is safe because it is never #included but
compiled separately instead.

Also note that we #include our own header first before all other libraries. This is traditional style
and helps everyone know what library we are working on.

And we also brought in more libraries than just string to help out. These are listed here and not
in the .h because they are only used here! Why #include string again? It is good style (and a
hard-to-break habit) to always bring in the libraries you are using in a particular file.

But notice also that is_numeric isn't there but there is another library of our design brought in
called classify. Let's look at its interface:

classify.h

#ifndef CLASSIFY_H_INC
#define CLASSIFY_H_INC

// true if ch is a digit, ., -, or +. false otherwise.
bool is_numeric(char ch);

#endif

And its implementation:

#include "classify.h"

#include <cctype>

(© Jason James @80 176 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

using namespace std;

// true if ch is a digit, ., -, or +. false otherwise.
//

// basically anything that can “start™ a numeric value.
bool is_numeric(char ch)

{
return isdigit(ch) // IS a digit
[| ¢ch =="'." // OR a decimal point
[| ch == "'-" // OR a 'negative' sign
[| ch == "'+"'"; // OR a 'positive' sign
}

Here the interface needed no libraries to help but the implementation did need one.

Note how one library depended on another. If this had happened at the interface file level, we could
have had a circular inclusion without those inclusion guard directives!

Finally, be aware that the application that wants to peek_ahead can just #include the input library.
They need the classify library handy, but need not #include it. Both library’'s implementations must
be compiled together with the application’s . cpp file, of course.

4.5.3 inline Functions

When calling a function, it takes time to set up the function’s activation record on the function call
stack, link references, copy values, and generally get things going. Then, when the function returns, the
value is copied from the return line to the return area of memory, the activation record is wiped, the
return value is given to the caller, and finally that is wiped as well. If only the computer didn’'t have to
do that work every time we called a function. If only we could make it more efficient somehow. . .

Here comes the inline keyword to the rescue!

The whole idea of making a function inline is to increase its run speed. The actual binary code
for the function is spliced into the calling function’s code at the site where a call would normally be
generated. Effectively, it makes the first diagram look like the second:

C C c
7
(\0(M 9~ . /// //
‘\L/ ’l,
¢ A7)
e ’
< d
m—— a 4 4 c =~ <
"‘{\“:*\Q’: £ F
Qe

Here 'c’ stands for a calling function and 'f' the called function. Also here, the length of horizontal

(© Jason James @80 177 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

lines are proportional to the number of bytes in the binary representation of the code and the lengths of
all lines — horizontal, arced, and dashed — are proportional to the running times of the code. This kind
of diagram is truly creatable even if this is just a fictional one.

Note how the regular function transfers control to a separate area of memory where that function’s
instructions in binary form are kept. Then, after executing there for a bit, the function’'s return sends
things back to the caller just after it had left.

But in the inline function call, there is no separate area for the function's code. It's code is spliced
in line with the calling function's code — hence the name. This speeds execution immensely as we don't
have to do all that setup and tear down for the function call itself — just run the function’s code!

This is a great deal of work for the compiler, of course. And it can slow down compilation for the
programmers. But any gains we make in run time for the prospective user lead to reputation points for
the company/project and increased sales of same.

Also note that to inline a function is merely a suggestion to the compiler which makes the final
decision of whether to make the function inline or not. The compiler knows, after all, more about
the hardware and software situation on the target platform than we do and can make a more informed
decision as to whether the inline is a good idea or not.

Why might it not be a good idea? Is it the slowdown in compilation time? No! It's the increase
in binary size. Note in the diagram that not only did the inline function not have a separate memory
area, but its code also repeated each time it was called. This extra code takes up more space than a
traditional function which just sits in one place in memory and is referred to over and over. But, still,
the time gains for the user are paramount and so we try!

4.5.3.1 Examples

Let's see how to inline functions with a final visit to the rounding suite:

/*
* INLINE overloaded helper for 'efficiency':
*/

// As below, but assume one's place. ..

inline double round_nearest(double value)

{

return round(value) ;

// Function to round caller's value to the nearest integer
// (or whatever multiple they desire -- see multiple
// argument) .

s
// NOTE: The place doesn't have to be a multiple of 10, it
// can be a multiple of 5 or 2.5 or 0.43 or
// “anything~!
inline double round_nearest(double value, double multiple)
{
return round_nearest(value / multiple) * multiple;
by

Note that we've put the inline keyword in front of the return type on the definition. Further, we
are just defining these functions — not prototyping them. This means that these definitions must be
before the calls so that the compiler has their heads for call-site verification as usual. But, even more,
the compiler needs the definitions so that it can check the binary size of the code against its heuristic
for deciding whether to actually inline the functions or not.

(© Jason James @80 178 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.5. Tools for Better Functions

So we cannot prototype inline functions. Instead, we place their definitions with any other functions’
prototypes.

4.5.3.2 inlining Library Functions

This rule applies also in a library interface file where normally real code is forbidden. That begs the
question: Do we have to write all these inline functions with heavy use of std: : syntax, then? After
all, we can't do a using directive in a .h file, remember?

The answer is no. We can place a using directive inside a function definition instead of at global
scope in the header file. This only affects the lookup of names inside that single function, then. Does
this save us on things like string parameters or returns, too? Again, the answer is no. We still have
to use the std:: syntax in the function’s head because the using directive only affects name lookup
inside the function.

Finally, there is an extreme situation where all of a library’s functions end up inline. In this situation
we would have an implementation file that just had a single #include in it and nothing else! Is this
necessary? No. We can eschew the implementation file in such cases and have a library of just a single
.h file. (Keep in mind that such circumstances are rare!)

4.5.3.3 inline and Default Arguments

And how does this affect defaulted arguments? Well, those have to be on the first head of the function
the compiler sees and an inline function has only one head. So this time we must put the defaulted
values on the function definition instead of the prototype because we don't have one!

4.5.3.4 inlining With Style

There was actually mass confusion at the onset of the inline function concept. The code figures in
the C++ standard wrote the functions across instead of up-and-down as normal. What? Yep. Instead
of a nice top-to-bottom layout, they typeset them left-to-right:

inline double round_nearest(double value) { return round(value); }

This was done to save space in the printed document. Print? They printed documents back then?
Yes. Not everything was a PDF on a tablet or phone. In 1998 when the first standard hit, things were
still being printed regularly. It was estimated that putting the code samples mostly sideways saved a
couple hundred pages off an already enormous document.

But the sideways examples led many to feel that inline'ing was all about doing code in one line.
Simply not true as our diagram above proves! But the myth persisted and can still be found on websites
today!

The only time to use such bad style is to save space for a presentation or publication. If you need
more code on the slide or page, then you can do the sideways style to get it there and then explain it in
the text or your discussion. Otherwise, please use top-to-bottom style as always!

4.5.3.5 Rules and Suggestions

So, when should we suggest to the compiler to inline a function? There are no hard-and-fast rules for
this, sadly. But some general guidelines follow:

e The code is generally simple and short.

e The function is 10 or fewer statements. (Not lines — statements. Also, a for loop head counts
as three statements since it collects three statements worth of work together like that. Also count
statements inside decision structures like branches and loops.)

(© Jason James @80 179 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.6. Advanced Techniques

e There are five or fewer branches. (Not branching structures, simple branches like an if or an else
or a case.)

As to counting statements, some things don’t count as statements. These include not only curly
braces which take up a line and comments, but things like the break in a switch's case or a return
with no actual calculation or a variable declaration without initialization.

This might sound difficult to come by, but take a look at some of our functions. Many of them fit this
billl (Also note that the 10 statements is just a guideline — not a rule. You might make an exception
for a function that has 11 or even 12 statements, but 13 should be right out!)

4.5.4 Help Debugging

When debugging, it is convenient to check for common idiotic argument values via a simple mechanism
rather than a large if-else structure. Such a mechanism is given in the assert/NDEBUG macros.
(Macros are like either a function or a constant depending on how they are used. assert here is a
function-style macro and NDEBUG is a constant-style one.) The assert macro can be found in the old C
library now known as cassert.

For instance, if your function needed two of its parameters to both be positive and their sum to be
at least 5, you could code up the following asserts:

assert(x > 0);
assert(y > 0);
assert(x + y >= 5);

If any of these fail to be true, the text of the test is printed along with the line number in the code
and source file name in a message indicating its failure — and the program is halted at this point.

When you are done debugging and ready to ship the product to users, just make sure to do:

[#define NDEBUG

or use a compilation-wide definition'* of NDEBUG to shut off all of your asserts at once. You never want
them to fire off during a regular run by a user — quite embarrassing!

The main problem with assert is that you have no idea what call to the function caused the problem.
You know which function died from the actual text printed, but which of so many calls to that function
caused the arguments to be so far off7!

That’s when you begin debugging with cerr. With judiciously placed cerr outputs, you can decide
exactly how far your program got before the crash. Depending on your circumstances, for instance, here
you might put a call to cerr before each call to the suspect function. Label which call is which in a
string literal, of course. (Don't forget that the use of cerr provides extra utility in that it can print
the values of variables, constants, and expressions along with the text.)

4.6 Advanced Techniques
In this section we'll see two more advanced techniques to make code reuse easier and make having

multiple results from a function a little more natural.

4.6.1 template Function Basics

Although we've only had one or two examples that merit this tool so far, when we get to containers later
(chapter 6) we'll be swimming in chances to use it. The first example was our swap function (section

14How to do this varies from system to system. Please ask your teacher how to do it at your school or in your environment.

(© Jason James @80 180 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.6. Advanced Techniques

4.4.1.2). We only used it once, but imagine if we had to swap more than just the one type of data in
a program. We would end up with the same code over and over and just the types of the data would
change:

void swap(double & a, double & b) void swap(char & a, char & b)
double c{a}; char c{a};
a = b; a = b;
b =c; b = c;
return; return;
} }
void swap(long & a, long & b) void swap(short & a, short & b)
long c{a}; short c{a};
a = b; a = b;
b = c; b = c;
return; return;
} }
void swap(bool & a, bool & b) void swap(string & a, string & b)
{ {
bool c{a}; string c{a};
a = b; a = b;
b = c; b = c;
return; return;
¥ ¥

Here we see but a few examples of this notion. All of the code remains the same — only the types
of data being acted on change.

Our other example was the read_numeric overload from section 4.4.2.3. We saw definitively that
the code was identical and just the types were changing.

In fact, it is this kind of overloading that will give us the main chance to use this tool.

Okay, okay! So what is this tool? Well, it is the template mechanism. As the name implies, we will
define a function as a template or pattern for the compiler to follow in creating binary functions during
the compilation process. It won't be exactly code that can compile directly, but just a guide for the
compiler to follow in creating such code to then translate to binary.

Let's take a look at it with the swap function from above:

template < typename SwapT >

inline
void swap(SwapT & a, SwapT & b) // both arguments exactly same type
{

SwapT c; // default initialization

c = a; /7 \

a = b; // |-- assignment with self
b = c; /7

return;

(Note, | made a slight change in how the local variable c gets its value to make a point. Just bear with
me...)

We've used two new keywords: template and typename. The first says to the compiler that the
following 'item’ in the code is actually a pattern to follow rather than normal code. In our case, the next
item is a whole function definition.®

51n the next volume we will see how to make templates out of other things as well.

(© Jason James @80 181 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.6. Advanced Techniques

Then the typename Alternatives

keyword is used inside

angle brackets to intro- Another keyword that is sometimes used to introduce the pattern's
duce a placeholder for type name is class, but this has an alternative use to introduce a real
the name of a type in data type as we'll find more about in chapter 5 and so | avoid it here.
the pattern. Since this Likewise, some people are ultra-lazy and use single letters to name their
type is being swapped pattern types like T or U. This is a bad policy as it is an identifier and
around by our algo- should have meaning just like the names of variables or functions or
rithm,*® I've called it type aliases.

SwapT. (The full name
SwapType would have
also been acceptable, but | felt it was a bit long so | shortened it in the spirit of time_t and wchar_t.)

|'ve also made some notes off to the side about what each line of code represents in terms of the
pattern type and its usage. The head of the template function demands that both parameters be of
the exact same type because they are both pure references.

The declaration of the helper variable uses a default construction when SwapT is string. It won't
technically do anything when SwapT is a built-in type, but we are planning for the general case here.

Finally, the compiler notices that the type must be assignable with itself — a short to a short, for
instance. While this seems a non-requirement, it is listed and can oddly be thwarted by advanced code.

After the compiler has read through this template function’s code, it has a new listing for a potential
function named swap. But that isn't its official name. Internally, the compiler sees it as swap<SwapT>.
This keeps us in mind that it isn't a regular function but a plan for a function.

Alright, then, how do we call it? There are two ways. We can tell the compiler explicitly what the
SwapT should be or we can let it figure it out for itself — via type deduction. An explicit call uses angle
brackets after the function name filled in with the desired type to use in the algorithm:

short x, y;
swap<short>(x, y);

We just list the explicit type once because the template only called for one typename. This confuses
some students who think they need to list it twice — once for each parameter.

This way is okay, but not needed since the template type is used in our function's argument list.
When that happens, we can allow the compiler to deduce the necessary type from context:

short x, y;
swap(x, y);

Here the compiler uses its knowledge that x and y are short integers to fill out the template's
pattern.

However it gets a prospective type for SwapT, the compiler next checks its requirements list:
e Are the two argument'’s types the same?

e |s there a default constructor for this type?

e |s the type self-assignable?

It might seem that the middle one will thwart our efforts with the short example we've used here,
but it turns out that the built-in types have default constructors that they just hardly ever use! So it
works in our favor here.

16Recall that an algorithm is a plan to solve a problem. So it is basically a generic way to talk about a C4++ function.

(© Jason James @80 182 of 361

EY MG TR

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.6. Advanced Techniques

Since all of these things are true for both attempts to use the swap template, both would instantiate!’
a new binary function named swap<short>. In future attempts to call swap with short arguments, the
compiler will use this instantiation directly instead of going through the requirements checklist all over
again.

Now that we've covered the basics — yes, that's all there is to them, we can look at the read_numeric
example, too:

template < typename ReadT >

inline
ReadT read_numeric(ReadT & num, const string & prompt, const string & errmsg)
{

cout << prompt;

cin >> num;

while (cin.fail())

{
cin.clear();
cin.ignore(numeric_limits<streamsize>::max(), '\n');
cerr << errmsg;
cout << prompt;
cin >> num;

}

return num;

Here we see another implication of our newfound template knowledge: numeric_limits is a
template of some sort, too! In fact, it is a templated class with instantiations holding appropri-
ate constants for all the built-in data types’ properties.

4.6.2 tuple returns

When we want a function to have multiple results in a single call, we've learned to use the reference
mechanism like so:

inline void read_point(double & x, double & y)
{
x = get_numb_with_lead(' (',
"Open parenthesis missing!\n",
"Point must have a parenthesis before "
"x-coordinate.\n") ;
y = get_numb_with_lead(',',
"Comma missing!\n",
"Point must have a comma between "
"coordinates.\n");
get_trailing opt(')',
"Close parenthesis missing!\n",
"Point must have a parenthesis after "
"y-coordinate.\n");
return;
}

Here we've used the optional notation functions defined in section 4.5.1.2. That last line is my call
to your exploration of placing that post-peeking code from the relevant example.

7 This is our actual verb for making a binary output of a template. Maybe we got tired of 'compile’ ? *shrug*

(© Jason James @80 183 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.6. Advanced Techniques

But there is a newer way to handle such results. We can use a special packaging tool to return
multiple values at once! This tool comes in two flavors. One is specialized for two returns like our
example here and the other is generalized for two or more at a time.

4.6.2.1 A pair of Results

The first is the pair and comes from the library utility. It can be used like this:

inline pair<double,double> read_point(void)
{
double x, y;
X = get_numb_with_lead(' ("',
"Open parenthesis missing!\n",
"Point must have a parenthesis before "
"x-coordinate.\n") ;
y = get_numb_with_lead(',',
"Comma missing!\n",
"Point must have a comma between "
"coordinates.\n");
get_trailing opt(')',
"Close parenthesis missing!\n",
"Point must have a parenthesis after "
"y-coordinate.\n");
return {x, y};
}

This should work on any C++17 compliant compiler (or newer). If your compiler is a little older —
C++411-ish, you might need to use this as your return line:

return make_pair(x, y);

This more explicitly creates the pair being expected.

How does the caller get those results? There are many ways:

pair<double,double> pi;

cout << "\nPlease enter your first point: ";

pl = read_point();

cout << "\nI read (" << pl.first << ", " << pl.second << ").\n";

This has the unfortunate side-effect of using the names first and second for the x and y parts
respectively. Also, we have to use the dot syntax to get them from inside the pair variable.

To avoid both of these things, we can use a structured binding in C+417 and above:

cout << "\nPlease enter your first point: ";
auto [x1, y1] = read_point();
cout << "\nI read (" << x1 << ", " << y1 << ") . \n";

This gives nice names to the contents of the returned pair and removes the need for those annoying
dots. This idea is called a structured binding because it binds parts of the structure (or group of values)
returned to the variables we want. (See section 5.4.3 for more on structures. lts discussion requires
reading much of the earlier part of that chapter!)

(© Jason James @80 184 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.6. Advanced Techniques

But what's that auto doing there? That is deducing the type of the result from read_point for
us. Otherwise, we'd have to retype pair<double,double> all over again. Can we use this with other
functions? Certainly, but we've had fairly simple situations so far and haven't needed it. |t makes sense
here and might make sense on future situations, too. I'll mention them when we get there.

There is also a third way, but it is almost worse than the first:

pair<double,double> pi;

cout << "\nPlease enter your first point: ";

pl = read_point();

cout << "\nI read (" << get<0>(pl) << ", " << get<1>(pl) << ") .\n";

This uses the get template to pick out the components of the pair numerically. They are numbered
from 0 just as are positions in a string.

4.6.2.2 More Than Two Results

What's the other way to return multiple answers, you say? It is called a tuple and is found in the
tuple library. It gets its name from the names we give groups of things: couple, triple, quadruple, etc.
Most end in 'uple’ and we just put a 't" on the front because 'uple’ sounded weird alone. *chuckle*

Here is the code for that and a 3D point reader:

inline tuple<double,double,double> read_3D_point(void)
{
double x, y, Z;
X = get_numb_with_lead(' ("',
"Open parenthesis missing!\n",
"Point must have a parenthesis before "
"x-coordinate.\n") ;
y = get_numb_with_lead(',',
"Comma missing!\n",
"Point must have a comma between "
"coordinates.\n");
z = get_numb_with_lead(',',
"Comma missing!\n",
"Point must have a comma between "
"coordinates.\n");
get_trailing opt(')',
"Close parenthesis missing!\n",
"Point must have a parenthesis after "
"z-coordinate.\n");
return {x, y, z};
¥
As before, the return statement might need to be modified on older compilers (C++11/14):
return make_tuple(x, y, 2);

This is a more explicit way to generate a tuple, but also more bulky.

Again, calls can be made with a tuple holder variable and the get mechanism:

(© Jason James @80 185 of 361

Exploring C++: The Adventure Begins
Chapter 4. Functions Programming Basics 4.7. Warnings: What Not to Do

tuple<double,double,double> pl;

cout << "\nPlease enter your first point: ";

pl = read_3D_point();

cout << "\nI read (" << get<0>(pl) << ", " << get<1>(pl)
<< ", << get<2>(pl) << ") . \n";

There isn't a way to use the dot to access the elements because the tuple can have any number of
elements and they couldn't name them all, now could they?

But you can also use structured binding with tuples:

cout << "\nPlease enter your first point: ";
auto [x1, y1, z1] = read_3D_point();
cout << "\nI read (" << x1 << ", " <<yl << " " <<zl << ") . \n";

This is very convenient, of course.

4.6.2.3 Anti-Examples

Of course, not all multiple result functions should use this mechanism. For instance, our swap should
stay using references. If we didn't, we'd make copies of the incoming results and then copy the swapped
values back to the caller in a pair and all this copying costs time and space! Using the reference makes
more sense as it saves all that time and space for other pursuits.

Some would even prefer not to use it on the read_point scenario as it precludes us from being able
to overload the 3D version. Did you notice that? Since the return type isn't used in overload deduction
— only the argument list — we had to have a separate name for that one.

So when should it be used? That's a good question, but it'll have to wait until quite a bit later for a
really good answer. That's at least a course away, sadly.

4.7 Warnings: What Not to Do

There are two things you do NOT want to do with functions, at least for now:
e use more than a single return statement in a single function

® use recursion — even unintentionally

4.7.1 Multiple returns

To avoid the first one, we can use a helper variable and store the result for the function in it and later
use a single return to send it back. So, instead of coding:

inline string suffix(long number)
{
if (number / 10 % 10 !'= 1)
{
switch (number % 10)
{
case 1:
return "st";
break;
case 2:

(© Jason James @80 186 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics

4.7. Warnings: What Not to Do

return "nd";
break;

case 3:
return "rd";
break;

}

return "th";

\.

We would instead use this:

inline string suffix(long number)
{
string suff{"th"};
if (number / 10 % 10 !'= 1)
{
switch (number % 10)
{
case 1:
suff = "st";
break;
case 2:
suff = "nd";
break;
case 3:
suff = "rd";
break;
}
}
return suff;
}

Having multiple returns isn't such a bad practice for this small function, but it can get hairy when
having errors return early from a function. In these situations, you might even return from a branch
that catches the error condition and then move on with the rest of the function. This leads to confusion
for both the caller and the maintainer. Always use proper else structure to branch around code that is
to not be executed. Always stop a loop gracefully with its condition instead of just returning from the

middle of it via some if.

4.7.2 Unintentional Recursion

We've already said that recursion is too hard to do without much more practice with functions. But it
is possible to form a recursion by accident! These situations often can be turned into a proper loop.

This person, for instance, has a simple menu defined by separate functions like so:

char get_choice(void)
{
char choice;
cout << "\t\tMain Menu\n\n"
"1) do Junk\n"
"2) do Stuff\n"

(© Jason James @80

EY MG TR

187 of 361

Exploring C++: The Adventure Begins

Chapter 4. Functions Programming Basics 4.7. Warnings: What Not to Do
"3) Quit\n\n"
"Choice: ";
cin >> choice;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
process_choice(choice);
return choice;
¥
bool process_choice(char choice)
{
bool quitting{false};
switch (toupper(choice))
{
case 'l': case 'J':
{
cout << "\n\tChoice 1 -- JUNK -- chosen!\n\n";
} break;
case '2': case 'S':
{
cout << "\n\tChoice 2 -- STUFF -- chosen!\n\n";
} break;
case '3': case 'Q': case 'X':
{
quitting = true;
} break;
default:
{
cout << "\n\aInvalid choice '" << choice << "'!!!\n\n"
"Please try to read more carefully next time...\n\n";
} break;
}
if (! quitting)
{
choice = get_choice();
¥
return quitting;
}

Note how each function calls the other to form a loop-like effect. This is horrible coding and should
be avoided at all costs! (Well, just never do it, okay?)

This could be redone much more simply and avoid potential stack overflow'®, we could by using a
nice do loop:

inline char get_choice(void)
{
char c