
Back Substitution to Solve Recurrence Relations

Let’s say you wanted a closed-form solution (explicit formula) for the recurrence
relation:

R1 = 1

Rn = 2Rn−1 + 2

How could we go about it? One method is known as back-substitution or some-
times substitute-and-simplify. In this method we start with the general form of the
recurrence (Rn here) and substitute for the prior terms from the right side what they
would be equal to:

Rn = 2Rn−1 + 2

= 2(2Rn−2 + 2) + 2

At first glance, it appears we’ve just made it messier, but we then proceed to
simplify it somewhat:

Rn = 2Rn−1 + 2

= 2(2Rn−2 + 2) + 2

= 22Rn−2 + 22 + 2

The trick here is to never oversimplify things. The usual urge amongst young
practitioners is to simplify it to the max like so: 4Rn−2 + 6 = 2(Rn−2 + 3). This
oversimplification will lead us to nowhere fast. What we are looking for is a helpful
pattern to help make this into that closed or explicit form. Let’s just follow along
for a bit:

Rn = 2Rn−1 + 2 (∗)
= 2(2Rn−2 + 2) + 2

= 22Rn−2 + 22 + 2 (∗)
= 22(2Rn−3 + 2) + 22 + 2

= 23Rn−3 + 23 + 22 + 2 (∗)

Already from the starred lines we see a pattern forming. Whenever the subscript
is having k subtracted, we are multiplying the Rn−k term by 2k and adding a new
2k term to the end. That is, we see:
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Rn = 2Rn−1 + 2

= 2(2Rn−2 + 2) + 2

= 22Rn−2 + 22 + 2

= 22(2Rn−3 + 2) + 22 + 2

= 23Rn−3 + 23 + 22 + 2

...

= 2kRn−k + 2k + · · ·+ 22 + 2 (∗)

In the new starred line — the extrapolated pattern line — we have the general
form of the substitutions. But where does this lead us ultimately? We need to see
how far k can take us. Since this recurrence started with n = 1 as the base case, we
can take the k value all the way to n− 1 before n− k becomes undefined. That is,
when we substitute in k = n− 1 we get n− (n− 1) = 1 as the subscript which is the
initial value of the recurrence:

Rn = 2Rn−1 + 2

= 2(2Rn−2 + 2) + 2

= 22Rn−2 + 22 + 2

= 22(2Rn−3 + 2) + 22 + 2

= 23Rn−3 + 23 + 22 + 2

...

= 2kRn−k + 2k + · · ·+ 22 + 2

...

= 2n−1R1 + 2n−1 + · · ·+ 22 + 2

= 2n−1R1 +
n−1∑
j=1

2j

The last line changes the series of powers of 2 into a nice partial sum of a geometric
sequence. It is just missing the 20 = 1 term when j = 0. We can fix this by both
adding and subtracting 1 from the right side and including the added one inside the
partial sum as a 20 term. Let’s also substitute in R1 = 1 to get rid of that as well:
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Rn = 2Rn−1 + 2

= 2(2Rn−2 + 2) + 2

= 22Rn−2 + 22 + 2

= 22(2Rn−3 + 2) + 22 + 2

= 23Rn−3 + 23 + 22 + 2

...

= 2kRn−k + 2k + · · ·+ 22 + 2

...

= 2n−1R1 + 2n−1 + · · ·+ 22 + 2

= 2n−1R1 +

n−1∑
j=1

2j

= 2n−1 +

n−1∑
j=0

2j − 1

Now we can simplify that partial sum with our handy formula from the summa-
tion section:

Rn = 2Rn−1 + 2

= 2(2Rn−2 + 2) + 2

= 22Rn−2 + 22 + 2

= 22(2Rn−3 + 2) + 22 + 2

= 23Rn−3 + 23 + 22 + 2

...

= 2kRn−k + 2k + · · ·+ 22 + 2

...

= 2n−1R1 + 2n−1 + · · ·+ 22 + 2

= 2n−1R1 +

n−1∑
j=1

2j

= 2n−1 +

n−1∑
j=0

2j − 1

= 2n−1 +
2n − 1

2− 1
− 1

= 2n + 2n−1 − 2 = 2n−1(2 + 1)− 2 = 3 · 2n−1 − 2

Now, all this pattern finding is really just a conjecture on our part so we should
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prove this is so by induction, of course. Let’s have a go, shall we?

Proof:

Base Case: n = 1
Left side: R1 = 1
Right side: 3 · 21−1 − 2 = 3 · 20 − 2 = 3− 2 = 1
These are equal, so the base case is proved.

Induction Step: Assume we know that for some k ≥ 1 that Rk = 3 · 2k−1 − 2. We
will show that Rk+1 = 3 · 2k+1−1 − 2 = 3 · 2k − 2.

Rk+1 = 2Rk + 2 back to recurrence definition

= 2(3 · 2k−1 − 2) + 2 by inductive hypothesis

= 3 · 2 · 2k−1 − 4 + 2

= 3 · 2k−1+1 − 2

= 3 · 2k − 2

Thus we have proved our conjecture and the closed form (or explicit formula) for
Rn is shown to be 3 · 2n−1 − 2.

Induction proof aside, hopefully the substitute-and-simplify method made sense
and you can use it to solve simple cases and maybe even not-so-simple cases alike.

Exercises

Solve each of the following recurrence relations by back-substitution. (Don’t forget
to prove your result by induction afterward!)

1. a0 = 4 and for n ≥ 1, an = 2an−1 + 1

2. b0 = 2 and for n ≥ 1, bn = n · bn−1 ∗

3. s0 = 3 and for n ≥ 1, sn = sn−1 + n

4. t0 = 0 and t1 = 1 and for n ≥ 2, tn = tn−2 − 2
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Solutions to Starred Exercises

2. Solving for bn:

bn = n · bn−1

= n((n− 1)bn−2)

= n(n− 1)bn−2

= n(n− 1)((n− 2)bn−3)

= n(n− 1)(n− 2)bn−3

...

= n(n− 1)(n− 2) · · · (n− k + 1)bn−k

...

= n(n− 1)(n− 2) · · · 1b0
= 2n!

Proof:

Base Case: n = 0
Left side: b0 = 2
Right side: 2 · 0! = 2 · 1 = 2
These are equal, so the base case is proved.

Induction Step: Assume we know that for some k ≥ 0 that bk = 2k!. We
will show that bk+1 = 2(k + 1)!.

bk+1 = (k + 1) · bk by recurrence definition

= (k + 1) · (2k!) by inductive hypothesis

= 2(k + 1)k!

= 2(k + 1)!

Thus we have proved our conjecture and the closed form for bn = 2n!.
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